
Optimization of Multi-Class Document Classification with Computational Search Policy 149

Optimization of Multi-Class Document 
Classification with Computational Search 

Policy

Khin Sandar Kyaw1 and Somchai Limsiroratana2 

ABSTRACT

In the era of internet communication, many elec-
tronic documents are distributed via website every
split second. The research interest for the process
of knowledge discovery has changed from working
with traditional printed documents to processing on-
line data such as online news document classifica-
tion. Most of the online data is in text documents
and therefore the optimization of multi-class docu-
ment classification is becoming a challenge for so-
ciety today. Traditional search policy for the fea-
ture selection process is degrading with exhaustive
search for complex features in document classifica-
tion. Therefore, meta-heuristic based computational
search is also becoming good solution to overcome the
problem of exhaustive search. The search policy of a
computational algorithm can provide the global op-
timal solution using a random search approach and
selected optimal features can support finding the op-
timal classification results. In this paper, Cuckoo op-
timization (CO), Firefly optimization (FO), and Bat
optimization (BO) algorithms are observed to over-
come the problem of multi-class document classifi-
cation by applying their adaptive search policies for
searching for the optimal feature subset in a feature
selection process. In addition, J48 and support vec-
tor machine (SVM) classifiers are used to evaluate
the quality of selected feature subsets. The results
from the proposed system are compared with tra-
ditional Best First search (BFS) and Ranker search
(RS) based classification results. Furthermore, the
results analysis is performed using various measure-
ments from the point of view of performance analysis
and complexity cost. According to the experimental
results, the proposed system can generate the good
multi-class document classification results using our
computational search policy.
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1. INTRODUCTION

Multi-class document classification is the super-
vised categorization to apply more than one label to
a document according to the previous records of a
training model. Nowadays, the trend for multi-class
document classification has moved toward automa-
tion. Consequently, the technology for mining the
data has also been adaptably by changing from sim-
ple to more sophisticated models for both prediction
of classification areas and analysis in clustering areas
(descriptive). Meanwhile, computational search pol-
icy is becoming a big challenge to enable the optimiz-
ing multi-document classification process to achieve
optimal classification performance. Computational
intelligence-based search policy uses Artificial Intel-
ligence (AI). It can support employing computation
power for solving very complex problems with various
fitness functions according to application demands
such as accuracy, complexity, etc. It involves adaptive
mechanisms to perform intelligently with the capa-
bilities of adaption to new situations, generalization,
abstraction, discovery, and association, in complex
problem areas. The computational intelligence con-
sists of several meta-heuristic algorithms which are
based on evolutionary computation (EC), swarm in-
telligence (SI), nature-inspired based intelligence, etc.

In document classification, feature selection should
be considered as the most important criteria for dis-
tinguishing the label of a document correctly. There-
fore, computational search policy is used to look for
the optimal feature subset for optimizing the per-
formance of multi-class document classification. To
be specific, computational search policy defines ob-
jective functions such as accuracy and error rate to
search for the features that can enhance the classifi-
cation output. Our proposed model is implemented
to achieve maximum accuracy (A) and minimum root
mean squared error (RMSE) for multi-class document
classification by using computational search policies
for feature selection. In addition, the minimization
of complexity cost, such as the selected number of
global subset features (NGF) and building time for
classification model (BCT), is improved with param-
eter tuning in the computation search algorithms.
The proposed model includes several stages: feature
extraction, feature selection, feature reduction, and
building the learning model.

In feature extraction, the term frequency-inverse
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document frequency (TF-IDF) denotes the method
used to calculate the weight of text features. Al-
though there are many types of computational search,
three new nature-inspired based meta-heuristic al-
gorithms, Cuckoo Optimization (CO), Firefly Opti-
mization (FO) and Bat Optimization (BO), are ex-
plored for a correlation-based feature selection ap-
proach because they can provide advanced nature
search for non-linear complex problems. In addi-
tion, principal component analysis is used to com-
press the selected features by selecting principal com-
ponents. Furthermore, two classification models, J48
and support vector machine (SVM), are used to eval-
uate the performance of document classification. In
addition, the results of the proposed model for the
rate of change of population size (PS) are compared
with traditional search-based results. The proposed
model achieved optimal performance classification re-
sults by reducing the number of selected features dra-
matically. In addition, the selected number of global
subset features (NGF) according to the rate of change
of population size is observed. Building times for the
classification models (BCT) are evaluated using two
different classifiers on individual NGF for each pop-
ulation size (PS).

2. RELATED WORK

Several related works for computational search-
based optimization of complex feature selection for
classification processes for various problem domains
are described in this section. The purpose of review-
ing the following related work is to point out the ca-
pability of different computational search algorithms,
such as cuckoo, firefly, and bat algorithms, to solve
the NP-hard feature selection problem for text data
[1], medical data, etc.

In [2], Cuckoo search was proposed for optimiza-
tion of the feature selection process in sentiment anal-
ysis. In addition, the baseline supervised learning
model (SVM) is implemented. The proposed binary
cuckoo search for optimization of the feature selection
process outperforms the supervised algorithm with
conventional TF-IDF score for the Kaggle dataset.

In [3], the authors proposed hybridizing of a mu-
tual information feature selection (MIFS) filter and a
modified binary Cuckoo search (MBCS) wrapper. In
addition, the accuracy of K-nearest neighbor classi-
fier is used as the fitness function. MBCS provided
higher classification performance with efficient com-
putational time by reducing the number of selected
features.

In [4], a hybrid binary ant lion optimizer with
rough set and approximate entropy reducts was pro-
posed for the feature selection process. It included
two incremental hill-climbing techniques which are
hybridized with the binary ant lion algorithm called
HBALO. A set of 18 well-known datasets from the
UCI repository were used for testing the proposed

model. Superior performance was attained in search-
ing for the optimal features.

In [5], a Whale optimization (WOA) based wrap-
per feature selection approach was developed. Two
binary variants of WOA algorithms were proposed us-
ing two pairs of operators to enhance the performance
of the original Whale algorithm. The proposed sys-
tem outperformed PSO, GA, ALO, and five standard
filter approaches.

In [6], a variant of the Firefly algorithm was used
in feature selection for classification and regression
models. The proposed algorithm employs Simu-
lated Annealing (SA) to achieve enhanced local and
global promising solutions, and chaotic-accelerated
attractiveness parameters and diversion mechanisms
of weak solutions are used to escape from the local op-
timum trap and mitigate the premature convergence
problem in the original FA algorithm. The results
illustrate significant improvements over other state-
of-the-art FA variants.

In [7], the authors proposed a Whale optimiza-
tion algorithm for solving the high-dimensional, small
instance feature selection problem. Two transfer
functions, S-shaped and V-shaped, are used. The
V-shaped system provided superior results to the
S-shaped system on nine different high-dimensional
medical datasets.

In [8], swarm intelligence based optimal feature se-
lection was investigated to enhance the predictive ac-
curacy of sentiment on Twitter. Two swarm-based
algorithms such as binary grey wolf and binary moth
flame are applied on two benchmark Twitter corpuses
to observe the accuracy performance. Both proposed
algorithms provided an improvement of accuracy with
a significant reduction in the number of features.

In [9], the authors proposed a new Bacte-
rial Colony optimization algorithm with multi-
dimensional population (BCO-MDP) for classifying
microarray gene expression cancers. The proposed
method is shown to be superior to the binary algo-
rithms in both feature size and efficiency. Moreover,
lower computational complexity was obtained when
compared to other population-based algorithms with
constant dimensionality.

In [10], hybridizing firefly algorithms with a prob-
abilistic neural network were proposed for solving a
classification problem. Levy flight with SFA based
firefly (LSFA) provided better classification accuracy
performance than the SFA and LFA. In [11], a hybrid,
multi-objective Firefly Algorithm (HMOFA) was ex-
plored for the optimization of big data. The proposed
HMOFA provided promising performance on six sin-
gle objective problems and six multi-objective prob-
lems.

In [12], a particle swarm optimization algorithm
was proposed to improve the document clustering
problem. The proposed model solved the inefficiency
of the performance clustering problem significantly.
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In [13], a new binary Dragonfly algorithm based
wrapper approach was investigated for the feature se-
lection process. The proposed method outperformed
PSO and GAs in terms of classification accuracy and
the number of selected attributes.

In [14], a multi-objective genetic algorithm was
used for optimizing support vector machines. The
proposed model provided good efficiency in terms of
a reduced number of features and good accuracy. In
[15], the authors proposed an effective hybrid Cuckoo
search with Harmony search to detect spam. The pro-
posed model provided good search performance and
high accuracy for spam detection.

In [16], binary optimization using a hybrid grey
Wolf algorithm was proposed for the feature selec-
tion problem. BGWOPSO outperformed the binary
GWO (BGWO), the binary PSO, the binary genetic
algorithm, and the whale optimization algorithm with
simulated annealing in terms of accuracy, selecting
the best features and using less computational time.

In [17], the author reviewed variants of the Bat
algorithm, its numerous practical optimization prob-
lems in engineering, and suggested directions for fu-
ture research. The description of application of the
Bat algorithm to real world optimization problems in-
cludes structural optimization, classification and fea-
ture selection, electrical power systems, and applica-
tions in other areas. In the classification and feature
selection application area, the Bat algorithm has been
used to tackle the problem of classification of high
dimensional microarray datasets to find the optimal
structure and the weight in [18].

In addition, the Bat algorithm was used to train
a neural network for data classification in [19], which
included multiple co-operative sub-populations and a
chaotic map to perform selection of an optimal solu-
tion. Furthermore, a binary Bat algorithm was used
to maximize classifier performance by searching for
the optimal features with a wrapper approach for fea-
ture selection in [20]. In [21], the capability of the
Bat algorithm to solve a high dimensional optimiza-
tion problem for feature selection in which the most
informative features had to be selected was proven.
In [22], the Bat algorithm was used to consider image
thresholding for a constrained optimization problem.

3. BACKGROUND THEORY

In this section, the background theory and neces-
sary problem domain knowledge are presented.

3.1 Multi-Class Document Classification

Fig. 1 illustrates an example of multi-class doc-
ument classification which includes more than two
classes of document.

When many documents are input to the classifica-
tion process, the classification process identifies which
individual documents belong to which class in a train-

Fig.1: Multi-Class Document Classification.

ing model. In the case of multi-class document classi-
fication, feature selection process is more complicated
than bi-class document classification because several
features are included in each class and it can lead to
a high dimensional problem.

3.2 Feature Extraction and Feature Selection

Feature extraction is the process of implementing
a feature vector. There are many kinds of feature ex-
traction schemes [23], such as information gain, mu-
tual information, and so on. However, the TF-IDF
scheme [24] is applied in this research to extract the
score values of individual text features. The defini-
tion of TF-IDF is multiplication of each term in the
test document with its normalized inverse document
frequency for each document.

The feature selection process is responsible for the
removal of irrelevant features and it includes two main
parts. A feature evaluation process is performed in
the first part and a feature searching process is the
second part. There are various types of feature selec-
tion processes such as filter, wrapper, hybrid, and em-
bedded schemes. The correlation-based feature sub-
set filter [25] is used for this research. This is because
it selects the features that are highly correlated with
predicted labels, but not correlated with other labels.

3.3 Cuckoo Optimization Algorithm (CO)

The Cuckoo optimization algorithm (CO) [26] is a
novel population based stochastic global search meta-
heuristic algorithm. It is inspired by the nature of
breeding behavior of some cuckoo species that lay
their eggs in the nests of host birds. An individual
egg represents a solution, and a cuckoo egg represents
a new solution. The purpose of CO is to use new and
potentially improved solutions to replace worse solu-
tions in the nests.

Three rules of CO can be briefly described. First,
each cuckoo lays one egg at a time, and dumps it
in a randomly chosen nest. Second, the best nests
with high quality eggs (solutions) will carry over to
the next generation. Third, the number of available
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host nests is fixed, and the egg laid by a cuckoo is
discovered by the host bird with a probability pa ∈
[0, 1]. In this case, the host bird can either get rid
of the egg, or simply abandon the nest and build a
completely new nest.

As a further estimation, a fraction pa of the n host
nests can be replaced by new nests with new ran-
dom solutions. In a problem of maximization, the
fitness function of a solution is directly proportional
to the value of the objective function. In the imple-
mentation of CO, a simple set of assumptions is used.
Each egg in a nest represents a solution, each cuckoo
can lay one egg, the objective function is to look for
new potentially better solutions by replacing a not-
so-good solution in the nests. However, this basic CO
can be extended to be more complicated by modifying
some parameters, such as the assumption that each
nest has multiple eggs representing a set of solutions.

In the calculation of CO, combination of a local
random walk and the global explorative one is per-
formed by switching the parameter pa in order to
have a balanced search. The local random walk is
defined by using Equation (1),

xt+1
i = xti + αs⊗H(pa− ∈)⊗ (xtj − xtk) (1)

where xtj and xtk are two different solutions selected
randomly by random permutation, H(u) is a Heavi-
side function, ∈ is a random number drawn from a
uniform distribution, and s is the step size. Mean-
while, the global random walk is determined by ap-
plying Lévy flights in Equation (2),

xt+1
i = xti + αL(s, λ) (2)

The Lévy flights are calculated randomly by using
Equation (3).

L(s, λ) ∼ λΓ(λ) sin(πλ/2)

π

1

s1+λ
, (s� s0 > 0) (3)

Here α > 0 is the step size scaling factor, which
should be related to the scale of the problem of inter-
est. In most cases, α = O(L/10) is used, where L is
the characteristic scale of the problem of interest. In
some cases, α = O(L/100) can be more effective and
avoid flying too far. Obviously, the α value in these
two updating equations can be different, α1 and α2.
However, α1 = α2 = α can be used for simplicity.

The benefit of CO is that Lévy Fights are used
for global search rather than standard random walks.
It can provide infinite mean and variance that can
encourage the exploration of more efficient searches
than standard Gaussian processes. In addition, it can
provide global convergence by combing the capability
of local and global search.

CO has been used in various areas of optimization
and computational intelligence with good efficiency.

For instance, it has been used in engineering design
applications [27][28]. Moreover, it can also be used
for training a spiking neural network model, opti-
mizing semantic web service composition processes,
optimizing designs for embedded systems, selection
of optimal machine parameters in milling operations,
and generating independent paths for software testing
and data generation.

In addition, modified CO is used for solving non-
linear problems. On the other hand, a discrete CO
is often used to solve nurse scheduling problems [29].
Furthermore, a variant of CO in combination with
a quantum-based approach can be used to solve the
Knapsack problem [30]. CO search and differential
evolution algorithms can provide more robust results
than PSO and ABC. In complex phase equilibrium
applications, CO search can offer a reliable method
for solving thermodynamic calculations. It can be
used for solving a six-bar double dwell linkage prob-
lem [31] and solving the distributed generation allo-
cation problem in distribution networks [32] with a
good convergence rate and performance.

Algorithm 1 presents the pseudo-code of the
Cuckoo optimization algorithm for multi-class doc-
ument classification. The objective function F(x) is
formulated in Equations (12) and (13).

Algorithm 1.Cuckoo Optimization Algorithm(CO)
Input: Objective function F (x), x = (x1, x2, . . . , xn).
Output: Best solution xbest.
1. Define initial population of n host nests
2. while (t < Gmax)
3. Get a cuckoo randomly, named i, and replace

its solution by performing Lévy Fights
4. Evaluate the quality of selected feature (Fi)

with objective function
5. Select a nest among n, named j, randomly
6. if (Fi > Fj)
7. Replace j by the new solution
8. end if.
9. A fraction or probability (pa) of the worse

nests are abandoned and new ones are built
10. Keep the best solution for nests
11. Rank the solutions for nests and find the

current best
12. Pass the current best solutions to next cycle
13. end while.

In Algorithm 1, t is the time step and Gmax is the
maximum number of generations. In addition, i is
the randomly selected cuckoo (i = 1, 2, . . .), and j is
the randomly selected nest from n, number of nest
(j = 1, 2, . . .).

3.4 Firefly Optimization Algorithm (FO)

The Firefly algorithm (FO) [33] is a nature-
inspired meta-heuristic algorithm. That is based es-
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pecially on the flashing patterns and the behavior of
fireflies. It includes three basic rules. First, since fire-
flies are unisex, each firefly will be attracted to every
other firefly regardless of their sex. Second, the level
of attractiveness is proportional to the brightness.
Therefore, for any two flashing fireflies, the less bright
firefly will move towards the brighter one. However,
a firefly will move randomly if there is no brighter
firefly nearby. Third, the brightness of a firefly is de-
termined by the landscape of the objective function.

The attractiveness is directly proportional to the
light intensity of adjacent fireflies and the variation
of attractiveness β for distance r can be defined using
Equation (4),

β = β0e
−γr2 (4)

where β0 is the attractiveness at distance r = 0. In
addition, r is the distance between two fireflies, and
it can be formulated as Equation (5),

r(i, k) = |x(~i)− x(~k)| =

√√√√ d∑
j=1

(xij − xkj) (5)

where xij is the jth component of the ith firefly and xkj
is the jth component of the kth firefly. The variable
d is the dimension or size of the studied document.
Moreover, the movement of firefly i to brighter firefly
j is defined by using Equation (6),

xt+1
i = xti + β0e

−γr2ij (xtj − xti) + αtε
t
i (6)

where the second term is due to the attraction and
the third term is randomization with respect to αt
being the randomization parameter. εti is a vector of
random numbers derived from a Gaussian distribu-
tion or uniform distribution at time t.

If β0 = 0, it becomes a simple random walk. On
the other hand, if γ = 0, it reduces to a variant of
particle swarm optimization. Furthermore, the ran-
domization εti can easily be extended to other distri-
butions such as Lévy flights.

Algorithm 2 illustrates the pseudo-code of the Fire-
fly optimization algorithm for multi-class document
classification. The objective function F(x) is formu-
lated in Equations (12) and (13).

The FO algorithm has attracted much attention
for many applications such as digital image compres-
sion with minimal computation time [34]. Meanwhile,
it is used for feature selection with consistent and bet-
ter performance by means of time and optimality.

Algorithm 2.Firefly Optimization Algorithm(FO)
Input: Objective function F (x), x = (x1, x2, . . . , xn).
Output: Best solution xbest.
1. Generate a population of fireflies randomly
2. Define light density I // TF IDF
3. Define absorption coefficient, γ, with 0.001
4. Define randomization parameter, α = 1
5. Define attractive value, β0 = 0.33
6. Define a maximum number of iterations,

MaxGeneration
7. Initialize t = 0
8. while (t < MaxGeneration) do
9. for (i = 1 : n) do
10. for (k = 1 : n) do
11. if (Ik > Ii) then
12. Calculate the distance r using

Equation (5)
13. Calculate the attractiveness β

using Equation(4)
14. Evaluate the solution by updating the

light intensity
15. end
16. end
17. Rank fireflies and find the current best
18. Record the position of the current best

firefly and discretize the current best
real position

19. end
20. Return the intensity with the discrete

position.
21. end.

3.5 Bat Optimization Algorithm (BO)

The Bat optimization algorithm (BO) [35] is a bio-
inspired algorithm which was developed recently. The
idea of BO was based on the echolocation features of
microbats. It uses a frequency-tuning technique to
increase the diversity of the solutions in the popula-
tion and it also employs automatic zooming in order
to balance exploration and exploitation for a search
process by mimicking the variations of pulse emission
rates and loudness of bats when looking for prey.

Three basic rules are used to develop the BO algo-
rithm. First, echolocation is used by all bats to sense
distance between food/prey and background barriers
in some magical way. Second, bats fly randomly using
velocity vi at position xi with a frequency fmin, vary-
ing wavelength λ, and loudness A0 to search for prey.
They can automatically adjust the wavelength (or fre-
quency) of their emitted pulses and adjust the rate of
pulse emission r ∈ [0, 1], depending on the proxim-
ity of their target. Third, the assumption of loudness
variation from a large (positive) A0 to a minimum
constant value Amin is used, although the loudness
can vary in many ways.

Algorithm 3 shows the pseudo-code for the Bat op-
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timization algorithm for multi-class document classi-
fication in which %∼ U (0,1). The objective function
F(x) is formulated in Equations (12) and (13). The
velocity vti and a location xti, at iteration t, in a d di-
mensional search or solution space, are always impor-
tant factors for the consideration of each bat. There
exists a current best solution x∗ for all of the bats.
The following three Equations (7), (8), and (9),

fi = fmin + (fmax − fmin)β (7)

vti = vt−1
i + (xt−1

i − x∗)fi (8)

xti = xt−1
i + vti (9)

where β ∈ [0, 1] is a generated random vector using a
uniform distributed function, are used to find x∗.

Algorithm 3.Bat Optimization Algorithm(BO)
Input: Objective function F (x), x = (x1, x2, . . . , xn).
Output: Best solution xbest.
1. Define velocity vti with frequency fi at xti,,A

i = 1, 2, . . . ,m
2. Define pulse rate ri and loudness
Ai, i = 1, 2, . . . ,m

3. while t < Tmax do
4. for each bat Bi do
5. Generate new solutions through Equations

(6), (7), (8)
6. if % > ri then
7. Select a solution among the best ones
8. Generate a local solution around the

best solution
9. end
10. if % < Ai and F (xi) < F (xbest) then
11. Accept the new solutions
12. Increase ri and reduce Ai
13. end
14. end
15. Rank the bats and find the current best

solution xbest
16. end

In the simple model of BO, ray tracing is not used,
although it could be an interesting feature for fur-
ther extension. Though ray tracing can be computa-
tionally expensive, it can be a very useful feature for
computational geometry and other applications. Fur-
thermore, frequency is always intrinsically linked to
a wavelength. Therefore, frequency f or wavelength
λ should be changed depending on the ease of imple-
mentation and other factors for different applications.

The implementation of BO can be used for var-
ious domain sizes of the problem of interest. Since
frequency is assigned randomly for each bat, a fre-
quency tuning algorithm should be used to support
a balanced combination of exploration and exploita-

tion. In addition, the loudness and pulse emission
rates can be used for controlling and auto zooming
into the region with promising solutions.

Since the loudness decreases when a bat has found
prey while the rate of pulse emission increases, the
loudness Ai and the rate of pulse emission ri must
vary between Amin and Amax during the iterations.
In the case of Amin = 0, a bat has just found the prey
and temporarily stops emitting any sound. The pulse
rate can be defined using Equation (10),

vt+1
i = αAti, rt+1

i = r0
i (1− eγt) (10)

where α and γ are constants. For any 0 < α < 1 and
γ > 0. The loudness can be defined using Equation
(11).

Ati → 0, rti → r0
i , as t→∞ (11)

where α = γ can be used for simple case. In addi-
tion, BO algorithms can be applied in various areas
of optimization, scheduling, feature selection, classi-
fication, data mining, image processing, etc.

3.6 J48 and Support Vector Machine (SVM)

J48 [36] is a simple and popular classification learn-
ing model which includes three main components for
making decisions: internal nodes, branches and leaf
nodes. In addition, it can be used commonly in clas-
sification and clustering problems. The unknown at-
tribute value of each tuple for the corresponding class
label is tested against the J48 decision tree by tracing
from the top root to a leaf node and then the path is
converted to rules of classification.

SVM [37] is a supervised learning algorithm for
selecting a modest amount of significant limit sam-
ples from all labels of a class. Then, the maximum
margin hyperplane is constructed. The most supreme
division among the classes is given by the hyperplane
with the greatest margin. Non-linear functions can
be used if the system exceeds the boundary of lin-
ear functions. The optimal hyperplane is achieved by
maximizing the distance from the separating bound-
ary to the closet point of the separating hyperplane.

3.7 Performance Evaluation Measurements

In the evaluation process of the proposed system,
accuracy (A) and root mean squared error (RMSE)
were used as performance measurements. Accuracy is
the measurement of correctness for true positive and
true negative. RMSE is one popular type of mea-
surement for calculating the “deviation of estimated
or predicted numeric values from their actual values”
by averaging a set of errors. A smaller mean squared
error value shows less error exists between the esti-
mated value and the actual value in learning mod-
els. In addition, a selected number of global features
(NGF) and building time for classification (BCT) are



Optimization of Multi-Class Document Classification with Computational Search Policy 155

used to evaluate the complexity cost of the proposed
model. The calculation for accuracy and RMSE are
shown in Equations (12) and (13) respectively.

Accuracy =
(TP+TN)

TP+FP+TN+FN
∗ 100% (12)

where TP is the number of true positive classifica-
tion, TN is the number of true negative classification,
FP is the number of false positive classification, and
FN is the number of false negative classification.

RMSE =

√∑N
i=2(Predictedi −Actuali)2

N
(13)

In Equation (13), N is the total number of samples.

4. SYSTEM IMPLEMENTATION

This section presents the detailed implementation
of our proposed system and it has four sub-sections:
experimental setup, system design, objective func-
tion, and parameter setting.

4.1 Experimental Setup

In this experiment, we used 2,250 news documents
with the labels for sports, politics, business, tech-
nology, and entertainment. Moreover, the Weka li-
brary file was used for the feature selection process
and learning model implementation. In addition, an
HP Desktop Parvilion PC with an Intel Core I3-9100,
4 GB DDR4 RAM, 1TB of non-volatile storage, run-
ning the Microsoft Windows 10 operating system was
used as the platform on which to implement the pro-
posed model. The total number of extracted features
was 2,591, and the correlation-based feature subset
filter approach was used to select the relevant fea-
tures from the extracted feature vector.

4.2 System Design

Document classification is the process of labelling
documents into specified categories. Fig. 2 shows
the optimization of multi-class document classifica-
tion using a computational search policy. In the train-
ing stage, removal of irrelevant words, and extrac-
tion of n-gram based TF-IDF are performed as a pre-
processing stage. Document classification can be re-
garded as multi-dimensional feature problem because
the extracted number of features is greater than the
size of dataset. If a traditional algorithmic search is
applied for multi-dimensional feature selection, it can
provide only local optimum features and that leads to
high computation cost for the learning model.

Local search for the individual class feature hy-
pothesis is not enough for complex features because
some of the features are common to all classes. There-
fore, a global search approach is observed for multi-

dimensional feature selection problems in various ap-
plications of computer science and engineering. A
highly intelligent classification learning model is used
to evaluate the performance of selected global opti-
mal feature subsets. In the testing stage, the trained,
highly intelligent classification model is applied to the
test documents to classify the labels of those docu-
ments.

Fig.2: Optimization of Multi-Class Document Clas-
sification using Computational Search Policy.

4.3 Objective Function of Proposed System

The objective function is the main component of
all computational search algorithms. It describes the
goal of the optimization problem with the specifica-
tion of minimal or maximal values of each objective
function. Basically, there are two types of objec-
tive function: single objective functions and multi-
objective functions.

In the implementation of our proposed system,
three computational search algorithms are used to
optimize the classification performance of multi-label
documents. The objective function for each computa-
tional search algorithm maximizes the accuracy (A)
and minimizes the root mean squared error (RMSE)
of classifier output. In addition, various population
sizes (PS) in the range of 20 to 200 are used to search
the global optimal feature subset which can enhance
the performance results of two of the classifiers.

4.4 Parameter Setting

In this section, the parameter settings for system
implementation are described. In Table 1, the main
parameter settings for BFS and RS are shown. The
prominent parameter settings for the BO, CO, and
FO algorithms are summarized Table 2.
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Table 1: Parameter Settings: Traditional Search.
Parameters BFS RS

Direction Forward Forward
Start Empty Set Empty Set
Termination Consecutive End of the feature

non-improving vector and rank
nodes (CNI: 5) ascending order

Table 2: Prominent Parameter Settings: Computa-
tional Search Algorithm.

Search Approach Parameter Value
BO Frequency 0.5

Loudness 0.5
CO Constant rate (pa) 0.25

Constant rate 0.69657
(sigma)

FO Coefficient of 0.001
absorption
Coefficient 0.33
(betaMin)

5. RESULTS AND DISCUSSION

In this experiment, we measured the performance
of modern computational search-based optimization
of multi-class document classification by comparing it
to the traditional determinative search. Three mod-
ern nature-inspired algorithms, Cuckoo Optimization
(CO), Firefly Optimization (FO), and Bat Optimiza-
tion (BO), are used with a filter feature selection ap-
proach for searching for the global optimal subset fea-
tures for our document classification model.

Moreover, the evaluation process for measuring the
performance of the proposed models was performed
by two different classifiers. The measurement of ac-
curacy and root relative square error for performance,
and the measurements of the number of selected fea-
tures and time taken for computation complexity, are
used to evaluate the capability of the proposed com-
putational search algorithms. All detailed testing re-
sults are discussed in the following four subsections.

5.1 Optimization of Classification Accuracy
Results with Computational Search

In this section, the accuracy results for multi-class
document classification using three different compu-
tational search algorithms, according to the rate of
change of the population size parameter, for perform-
ing the evaluation process with two different classi-
fiers are discussed.

Fig. 3 depicts accuracy results for the J48 learn-
ing model using Cuckoo (CO), Firefly (FO), and Bat
Optimization search (BO) for classifying five labels
of multi-class documents. The best accuracy result
was achieved using CO with the value of (92.03%) at
population size (PS = 80). Moreover, the second-best
accuracy result (90.55%) was obtained continuously
at (PS = 90). The approximate value of second-best

accuracy, (90.23%) happened at (PS = 200). Mean-
while, the accuracy value for FO provided the highest
accuracy value of ((91.81%) at the initial population
size (PS = 20). The second highest one, (90.77%),
was provided at (PS = 100). For BO, the peak ac-
curacy value (89.42%) existed at (PS = 90), and
the results (89.15%) at (PS = 200) are not different
from the peak value.

Fig.3: Accuracy Results using J48 with Computa-
tional Search Policy.

Since the purpose of the objective function for the
proposed system was to maximize the accuracy of
classification, the proposed model was tested using
different population sizes in this experiment in order
to find the optimal feature subset that would yield the
optimal accuracy of classification results. The trend
for the three optimization search algorithms was to
fluctuate when the size of the population changed
because computational search uses a random search
policy according to the probability value of individ-
ual candidate solutions for both exploitation and ex-
ploration search. However, the ability of intelligent
search according to the fitness value of neighbor can-
didate solutions can be used to find the global optimal
results. Nevertheless, the average accuracy results for
the three nature-inspired based computational search
algorithms was approximately 90% for the J48 learn-
ing model.

Fig. 4 shows the evaluation process using an SVM
classifier to measure the performance for our pro-
posed system in the range of population sizes from 20
to 200. In contrast with J48 classification, the peak
accuracy value (89.60%) was provided by the FO
search policy and the second-best accuracy (88.89%)
was achieved in the case of BO for multi-class doc-
ument classification. The CO-based optimization
model was third best in the measurement of accuracy.
Its highest accuracy value of (87.22%) was obtained
at (PS = 20). Meanwhile, the lowest accuracy value
(80.15%) of FO was still not better than the lowest
one of BO (84.74%) or the lowest one of CO (82.27%).
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In addition, the fluctuation rate for the three opti-
mization algorithms did not change dramatically, un-
like with the J48 classifier (Fig. 3). Moreover, there
were no accuracy results that were less than 80% in
all three algorithms using the SVM evaluation pro-
cess when compared to the accuracy results of J48.
In summary, the accuracy value trend is different for
each computational search algorithm when synchro-
nizing with different classifiers. Therefore, more clas-
sifiers should be set up with computational search
policies, and their effects measured in the future.

Fig.4: Accuracy Results using SVM with Computa-
tional Search Policy.

5.2 Error Results for Multi-Class Docu-
ment Classification using Computational
Search

Another objective function for our proposed model
minimizes the error for multi-class document classi-
fication. Therefore, Fig. 5 and 6 demonstrate the
evaluation process of our proposed system using J48
and SVM in terms of root mean square error.

In Fig.5, the highest minimum means squared er-
ror (RMSE) value (0.1568) happened at (PS = 80)
in CO and the highest maximum RMSE (0.2171) oc-
curred at (PS = 20). Meanwhile, FO based optimiza-
tion of multi-class document classification provided
the lowest RMSE (0.1626) at (PS = 20) and also
the highest one (0.2692) at (PS = 90). In BO-based
optimization, the smallest error rate (0.1814) was
achieved at (PS = 90), and the largest one (0.2602)
occurred at (PS = 20). In addition, all RMSE results
of our proposed model using computational search
policy were not higher than the average of RMSE
(0.5), which means our proposed model satisfies the
objective function of accuracy and error rate.

CO-based optimization for multi-class document
classification provided the least RMSE value, followed
by FO-based optimization of error occurrence. How-
ever, the BO-based proposed model presented the
highest RMSE value, similar to the performance ac-

curacy results in section 5.1. In addition, the rate of
change of RMSE results for all three computational
search algorithms is linear. That means the proposed
model provides a good approach for this optimization
problem.

Fig.5: Error Results using J48 with Computational
Search Policy.

Fig. 6 shows the value of RMSE for the CO, FO,
BO, and SVM classifiers used to evaluate the perfor-
mance of our proposed system. One can see in the
trend of results in accuracy measurement (first ob-
jective function) (Fig. 2) that the minimum RMSE
value (0.1697) was obtained at (PS = 40) in the op-
timization of classification using the FO algorithm,
and the second most minimum value (0.1824) at (PS
= 40) occurred in the BO algorithm. The highest
RMSE value (0.1986) at (PS = 20) happened with
the CO-based search policy. However, the highest
RMSE value (0.2622) occurred with the FO search
policy. Although CO and BO-based search policy
cannot provide a lower RMSE value than FO, their
fluctuation graphs are linear for population sizes of
20 to 200.

Fig.6: Error Results using SVM with Computa-
tional Search Policy.
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5.3 Complexity Cost Results for Multi- Class
Document Classification with Computa-
tional Search

In this section, the cost of complexity for indi-
vidual, nature-inspired based computational search
strategies are discussed using selected number of
global subset features (NGF) and building time for
the classification models (BCT).

Table 3 shows the complexity cost for CO-based
optimization classification. The lowest NGF is (481 )
and the second lowest one (498 ) was selected in the
first and next smallest population sizes (PS = 20)
and (PS = 30) respectively. The trend for NGF re-
sults is to increase when the PS value is increased,
and the maximum NGF value (858) was obtained at
(PS = 200). As a consequence of having the lowest
NGF, the shortest BCT (0.69) was obtained at the
lowest PS value in the evaluation process of J48. Sim-
ilarly, the highest cost for computation time (2.06)
was obtained at maximum NGF in J48 classification.

In contrast, the best computation cost for building
a classification model (6.35) in SVM was achieved
at the second highest NGF value (PS = 150), and
the longest BCT (9.94) happened at the second low-
est NGF value (PS = 30). Among these two clas-
sifiers evaluation processes, the computation cost re-
sults for optimization of multi-class document classi-
fication using the J48 classifier was better than the
one using the SVM classifier for all PS values. Like
the measurement of performance, the results for both
J48 and SVM always have inclination and declination
according to the rate of change of population size.

Table 3: Complexity Cost Results using CO.
PS NGF BCT-J48 BCT-SVM
20 481 0.69 6.76
30 498 1.08 9.94
40 500 0.72 7.64
50 693 1.15 9.09
60 777 1.42 9.86
70 778 1.53 7.82
80 785 0.94 6.74
90 765 1.39 7.70
100 843 1.05 7.43
150 770 1.41 6.35
200 858 2.06 8.89

Table 4 shows the complexity cost results for the
FO-based optimization model for document classifi-
cation in terms of NGF and BCT values in both two-
evaluation processes for J48 and SVM classifiers. The
smallest selected number of feature subsets (85 ) was
achieved at (PS = 40), while the largest one (1021)
occurred at (PS =100). Similarly, the shortest BCT
values for both J48 (0.31) and SVM (6.34) classifiers
were obtained at the smallest NGF value at the low-
est PS value. However, the occurrence of the highest

BCT value in both J48 and SVM classifiers was differ-
ent. It was (1.59) at (PS = 20) in J48, and (12.58)
at (PS = 60) in SVM.

Table 4: Complexity Cost Results using FO.
PS NGF BCT-J48 BCT-SVM
20 942 1.59 10.42
30 868 1.58 8.42
40 85 0.31 6.34
50 636 0.87 9.23
60 263 0.47 12.58
70 295 0.80 6.35
80 227 0.50 9.47
90 547 0.83 7.27
100 1021 1.56 10.42
150 256 0.44 6.51
200 936 1.49 9.12

In addition, the computation complexity results
for the BO-based mode are shown in Table 5. The
same result trend for NGF and BCT-J48 occurred
like in the case of CO. For example, the smallest NGF
value (279 ) was obtained at the lowest PS (PS = 20),
and the best computation cost (0.60) was achieved
at the smallest NGF in the J48 evaluation process.
In contrast, the shortest BCT value (6.49) in SVM
classifier was provided at (PS = 80). As in the re-
sults of CO and FO, better BCT values are given by
the J48 classifier than the SVM one for all values for
various population sizes. Moreover, the computation
cost is directly proportional to the selected number
of feature subsets in the J48 classification model, but
the reverse condition exists in SVM.

Table 5: Complexity Cost Results using BO.
PS NGF BCT-J48 BCT-SVM
20 279 0.60 7.96
30 311 0.64 10.82
40 396 0.78 10.26
50 595 1.39 8.96
60 732 1.50 7.79
70 473 1.04 12.01
80 645 1.34 6.49
90 776 1.41 7.58
100 469 1.17 10.10
150 478 1.45 10.43
200 731 1.67 10.57

5.4 Performance Comparison: Computa-
tional Search Policy and Traditional De-
terminative Search

In this section, the comparison of performance be-
tween computational search and traditional determi-
native search for optimization of multi-label docu-
ment classification is discussed.
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According to the accuracy and error results in Ta-
ble 6, the accuracy value of CO, (92.03%), is the best
one among three computational search algorithms.
The accuracy of RS (92.44%) is also the best one
among the two traditional search algorithms for the
J48 classifier. Therefore, the proposed model us-
ing CO search algorithm provides the optimization
of classification accuracy with a reduced NGF value
(785 ) when compared to the one in traditional search
(2591 ). Better results can be obtained according to
the parameter tuning of PS in (Fig. 1) if we increase
the computation cost.

In contrast, traditional search policy can only pro-
vide a fixed accuracy value that can lead lower ac-
curacy when more unseen datasets are considered for
testing. Similarly, the accuracy values of FO and BO
also reached (91.81% ) and (89.42% ), and their re-
sults are approximately the same as the results in
RS (92.44%) and BFS (92.08%) with adaptive in-
telligence search and reduced NGF values. However,
the best accuracy result was provided in the eval-
uation process of SVM with FO search (89.60%),
while the best accuracy value for traditional search
was also changed from RS to BFS (95.18%). In ad-
dition, the accuracy result for RS (60.44% ) dropped
dramatically with the SVM classifier, while the com-
putational search policy-based optimization of classi-
fication accuracy did not decline sharply for all three
algorithms’ results.

In the result comparison of RMSE between compu-
tational search and traditional determinative search,
the same trend of results was achieved as in the case
of accuracy comparison, except for the change of best
RMSE value in BFS for the J48 evaluation process.
Although the same result of RMSE is obtained with
the CO algorithm (0.1568) when compared to BFS
(0.1569), the approximate RMSE value of BFS at
(NGF = 102) and RS (0.1603 ) can be obtained
in FO search (0.1626 ) at (NGF = 2591) with the
lowest computation cost of NGF (85 ) in FO. In the
case of the SVM classification process, the error value
for RS (0.3786 ) inclined obviously, while a linear
change of RMSE values for all three optimization al-
gorithms was obtained. However, the lowest RMSE
value changed from CO in J48 classification to FO
(0.1697) in SVM, and the RMSE value of CO in-
creased when compared to RMSE in the J48 evalua-
tion process.

Table 6: Accuracy and Error Results Comparison:
Computational Search and Traditional Search.

Experiments A-J48 A-SVM RMSE- RMSE-
J48 SVM

CO 92.03% 87.22% 0.1568 0.1986
FO 91.81% 89.60% 0.1626 0.1697
BO 89.42% 88.89% 0.1814 0.1824
BFS 92.08% 95.18% 0.1569 0.1197
RS 92.44% 60.44% 0.1603 0.3786

Table 7 shows the comparison of complexity cost
results between computational search and traditional
search. FO based optimization of document classi-
fication model (85) provided the smallest reduced
number of selected feature subset when compare to
the results in traditional search. In addition, CO
(481) and BO (279) computational search algorithms
also provided reduced NGF when compared to RS
(2591 ). In the point of view of computation time for
the J48 classifier, the best BCT value for FO (0.31)
is better than the best BCT value for BFS (0.34).

For the other computational search algorithms
of CO (0.69) and BO (0.60), the results for BTC
were better than the traditional search algorithm
of RS (2.59 ). But BCT values for two traditional
search algorithms, BFS (10.89) and RS (18.12 ),
and three conventional search algorithms, CO (6.35),
BO (6.34), and FO (6.49), increased sharply with
SVM. However, better BCT results for three compu-
tational searches was achieved when compared to the
two traditional searches, and the worst BCT value
of BO (6.49) is still better than the best one of BFS
(18.12 ).

Table 7: Complexity Cost Results Comparison:
Computational Search and Traditional Search.

Experiments NGF BCT-J48 BCT-SVM
CO 481 0.69 6.35
FO 85 0.31 6.34
BO 279 0.60 6.49
BFS 102 0.34 10.89
RS 2591 2.59 18.12

6. CONCLUSIONS AND FUTURE WORK

Our proposed system provides good optimization
results of multi-class document classification with a
computational intelligence-based search policy by re-
ducing the number of selected features dramatically.
The best accuracy results, with RMSE and BCT, are
achieved in the evaluation process of J48. It can be
applied to text document classification for BBC news.
However, if the behavior of data is changed in volume,
complexity, dimensionality, and so on, adaptation of
the scheme for document classification processing is
always needed. Therefore, the following issues could
be considered for future research. First, the proposed
model should be implemented on Hadoop distribution
platform in order to process higher population sizes
for computational algorithm search by decentraliz-
ing individual tasks for each agent with a real time
big data classification model. Second, the proposed
model should be upgraded by combining knowledge
of NLP to build a more intelligent learning model
which makes decisions more like a human being so it
can provide higher accuracy for the learning model
with a lower error rate.
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