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ABSTRACT

An extensive s-domain multilinear algebraic model
of the transformer has been proposed. This model
is alternatively a tensor algebraic model because the
multilinear algebra is alternatively the tensor algebra.
Unlike the traditional matrix-vector approach, which
relies on conventional linear algebra, this model,
which in turn uses the multilinear algebra that is of
higher dimension and is thus more generic, is ap-
plicable to those recently often cited transformers
which often have unconventional characteristics such
as frequency variant parameters, time variant param-
eters, and fractional impedance. Examples of such
transformers are on-chip monolithic transformers, dy-
namic transformers, and transformers with fractional
impedances. The imperfect coupling has been con-
sidered, and a multiple winding transformer has also
been assumed. Applications of the proposed model to
the chosen recent transformers with unconventional
characteristics is presented. The effects of failure
of Kron’s postulate on power invariant and valid-
ity of duality invariant, which pertain to the men-
tioned issues, are also discussed. The proposed ex-
tensive model is more inclusive and up to date than
the matrix-vector based model and previous algebraic
models. However, it is more complicated.

Keywords: Dynamic Transformer, Fractional Mu-
tual Inductance, Multilinear Algebra, On-chip Mono-
lithic Transformer, Tensor Algebra

1. INTRODUCTION

Transformers have been used in various electri-
cal engineering applications for decades. Accord-
ing to the simplicity of the algebraic based analysis
in the complex frequency domain (s-domain), trans-
formers have been traditionally modelled in the s-
domain by using a classical linear algebra (matrix-
vector algebra) approach where the impedances have
been modelled by using linear functions. Moreover,
those parameters which comprise the coefficients of
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the impedance functions have been assumed to be
constant. Therefore this traditional approach works
well with a conventional transformer which employs
linear impedance functions and constant circuit pa-
rameters. Unfortunately this is not applicable to
many recently developed transformers including on-
chip monolithic transformers of both passive and ac-
tive types [1]-[13], dynamic transformers [14]-[16] and
those with fractional impedances which is termed the
fractional-order mutual inductance [17]. These re-
cently developed transformers have been applied in
many electronic circuits [2]-[13], [17]. Severe error
may occur in calculations using the traditional model
[6]. This is because these recent transformers em-
ploy unconventional characteristics such as frequency
variant circuit parameters, time variant circuit pa-
rameters, and fractional impedances, all of which are
far beyond the scope of the traditional approach.

In the last few decades, a very powerful mathe-
matical tool entitled multilinear algebra, or tensor
algebra, which is the generalization of the matrix-
vector algebra, has been applied to electrical en-
gineering [18]-[24]. Tensor algebraic modelling at-
tempts of the transformer have been proposed [19],
[20], [24]. Unfortunately, the results of [19] and [20]
are also inapplicable to recent transformers because
these works used order 2 tensors as the impedance
and current/voltage transformation arrays and used
order 1 tensors for current/voltage arrays. They also
used linear impedance functions and assumed that
all parameters which comprise the coefficients of the
current, voltage and impedance functions are neither
time nor frequency dependent. Therefore these pre-
vious modelling attempts are effectively identical to
the aforementioned traditional matrix-vector algebra
based modelling approach. They also fail to model
many modern transformers. Moreover, these previ-
ous attempts were performed assuming that the cou-
pling is perfect, thus the coupling factor is fixed at
1. Unfortunately, the coupling can be imperfect in
many recent transformers. This occurs, for example,
in passive on-chip transformers because the magnetic
flux linkage is weak [1]-[5], and in active on-chip trans-
formers since lossy active couplings have been utilized
[7]–[13]. Their coupling factors can be lower than 1.
In practice, such coupling factors have arbitrary val-
ues between 0 and 1.

Despite the failures of [19] and [20], tensor algebra
is still very promising due to its greater generality
compared to matrix-vector algebra. Therefore we de-
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rived a tensor algebraic model of the on-chip mono-
lithic transformer in [24] where the effects of imper-
fect coupling and frequency dependent circuit param-
eters, which are common to the on-chip transformer,
have been taken into account. However, this previ-
ous work used order 2 tensors for the impedance and
current/voltage transformation arrays and used order
1 tensors for current/voltage arrays similarly to [19]
and [20]. Thus that model also fails to model some re-
cent transformers, particularly those with time vari-
ant circuit parameters. As a result, in this paper
we extend our previous work in this research by us-
ing tensors of order 2 for the current/voltage arrays,
and order 3 tensors for the current/voltage trans-
formation and the impedance arrays. Each element
of these tensors refers to a single arbitrary time in-
stant. By doing so, and using the nonlinear sdomain
impedance functions, the effects of both time and fre-
quency variant circuit parameters can be simultane-
ously taken into account even though the model is
purely in the s-domain. The application of our ex-
tended model to the chosen recent transformers with
frequency dependent parameters, time dependent pa-
rameters, and fractional impedances can be done by
simply changing the model parameters according to
the transformer of interest. Examples are presented
in this work. Moreover, the effects of failure of Kron’s
postulate on power invariant and validity of duality
invariant [22] to the voltage-current relationships of
the transformer, which merit concern for the men-
tioned issues, have also been discussed. The pro-
posed extensive tensor algebraic model is more in-
clusive than its predecessor [24]. It is an efficient and
up to date approach for modelling recent transform-
ers. In the subsequent sections, an overview of tensor
algebra will be briefly given.

2. A BRIEF OVERVIEW OF TENSOR AL-
GEBRA

A tensor can be defined as a multidimensional ar-
ray. Any tensor of order N is an N -dimensional array.
Let X be arbitrary tensor of order N , it’s Frobenius
norm can be given in terms of its element xi1,i2,...,iN
as

‖X‖F =

√√√√ IN∑
iN=1

· · ·
I2∑
i2=1

I1∑
i1=1

[x2
i1,i2,...iN

] (1)

where {i1} = {1, 2, . . . , I1}, {i2} = {1, 2, . . . , I2}, . . . ,
{iN} = {1, 2, . . . , IN}.

If Y is another tensor with order N as well as X,
their scalar product i.e. <X,Y > , is

〈X,Y 〉 =

IN∑
iN=1

. . .

I2∑
i2=1

I1∑
i1=1

[xi1,i2,...iNyi1,i2,...iN ] (2)

where yi1,i2,...iN denotes an arbitrary element of
Y .

Moreover, if X and Y also have the same dimen-
sions, their Hadamard product [26] Z = Y ⊗ Y is
an order N tensor with similar dimensions to those
of X and Y where each of its elements can be given
in terms of xi1,i2,...iN and yi1,i2,...iN by

zi1,i2,...,iN ,j1,j2,...jN = xi1,i2...iNyi1,i2,...iN (3)

Now let Y be of arbitrary order M with yi1,i2,...iM
with {j1} = {1, 2, . . . , J1}, {j2} = {1, 2, . . . , J2}, . . . ,
{jM} = {1, 2, . . . , JM} as its arbitrary element. The
mode p contraction product of X and Y , Z =
X ×p Y , is an order M +N − 2 tensor where each of
its elements can be given in terms of xi1,i2,...iN and
yi1,i2,...iM by

zi1,i2,...ip−1,ip+1,...,iN ,j1,j2,...jp−1,jp+1,...jM =

Ip∑
ip=1

[xi1,i2,...iNyj1,j2,...jM]

(4)

For a detailed foundation of tensor algebra, readers
may refer to tutorials on tensor algebra [25]-[27].

3. THE PROPOSED MODEL

In this section, the proposed extensive tensor al-
gebraic model will be derived. For the conventional
transformer, the current/voltage arrays can be de-
fined as vectors of s-domain current/voltage func-
tions. Moreover, the current/voltage transforma-
tion and impedance arrays can be defined as ma-
trices of time invariant transformer circuit parame-
ters and linear constant coefficient impedance func-
tions respectively, as these coefficients are comprised
of such time invariant parameters. However, this is
not the case for some recent transformers. If the cur-
rent/voltage arrays of such a transformer have been
defined as vectors where the current/voltage transfor-
mation and impedance arrays have been defined as
matrices, the time dependent parameters yield cur-
rent/voltage transformation matrices with time de-
pendent elements and the impedance functions with
time dependent coefficients. As a result, the elements
of current/voltage vectors become functions of both
complex frequency and time. Thus, the obtained
model will be in both the time domain and the s-
domain. Obviously, performing any task using such
a model can be very complicated.

Therefore we redefine the current/voltage arrays
of both primary and secondary windings as order 2
tensors. For an arbitrary transformer with N pri-
mary and M secondary windings, the current ten-
sors of the primary and secondary windings are re-
spectively IPik and ISjk where the voltage ten-
sors of both primary and secondary windings are
VPik and VSjk. Note that {i} = {1, 2, . . . , N} and
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{j} = {1, 2, . . . ,M} where N and M are integers.
Many time instances must be considered due to the
effects of time dependent transformer parameters:
{k} = {1, 2, . . . ,K} whereK can be arbitrary integer.
Thus each, element of IPik, IPik, and that of ISjk,
ISik, are respectively the s-domain current function
at arbitrary kth instant of any ith primary winding
and that of any jth secondary winding. For VPik and
VSjk, we let each of their elements, VPik and VSjk, be
respectively the s-domain voltage function of any ith

primary winding and that of any jth secondary wind-
ing at any kth instant. As a result, IPik, ISik, VPik
and VSjk are functions of complex frequency only,
and the obtained current/voltage tensors are able to
model the time dependencies of current/voltage func-
tions caused by those of the circuit parameters despite
the fact that these tensors are purely in the s-domain.
This cannot be achieved if an order 1 tensor has been
assumed similarly to [19], [20] and [24] because a ten-
sor of order 1 is mathematically equivalent a vector.
Before we proceed further, it should be mentioned
here that the dimensions of IPik and VPik are N×K,
but those of ISjk and VSjk are M ×K.

If we let IPi and ISj be extracted from arbitrary
kth mode-1 fiber [25] of IPik and ISjk, the current
transformations by from ith primary to jth secondary
winding and vice versa can be modelled in terms of
the contraction products [26] as

∀k[ISj = IPi ×1 C
SP
ji (5)

∀k[IPi = ISi ×1 C
PS
ij (6)

where ×1 denote the mode 1 contraction product
operator. Moreover, CSP

ji and CPS
ij have been ex-

tracted from the arbitrary kth frontal frontal slice [25]
of CSP

ji and CPS
ij which are the primary to secondary

current transformation tensors and vice versa, respec-
tively.

For taking the effects of time variant parameters
into account while keeping the model purely in the
s-domain for simplicity, CSP

ji and CPS
ij must be of

order 3. Their dimensions are M ×N ×K and N ×
M ×K. Each of their elements, cPSij and cSPji , which
are simply time invariant, can be respectively given
by

cSPjik = −
kSPjik
nSPjik

(7)

cPSijk = −
kPSijk
nPSijk

(8)

where nPSijk (nSPjik) and kPSijk (kSPjik ) denote the turn ra-

tios and coupling factors from jth secondary winding
to ith primary winding (vice versa) at an arbitrary kth

instant. The effects of imperfect coupling have been
taken into account, so 0 < kPSijk ≤ 1 and 0 < kSPjik ≤ 1.

If we let these current transformation tensors be of or-
der 2 similarly to those of [19], [20] and [24], they will
be mathematically equivalent to the matrices. As a
result, their elements must be time dependent instead
of being constant for modelling the the effects of time
variant parameters. As a result, the obtained model
will be in both the time domain and the s-domain,
which is complicated.

If we let VPi and VSj be extracted from an ar-
bitrary kth mode-1 fiber of Vik and Vjk, the volt-
age transformation from ith primary to jth secondary
winding and vice versa can be modelled as follows

∀k[VSj = VPi ×1 A
SP
ji ] (9)

∀k[VPi = VSj ×1 A
PS
ij ] (10)

where ASP
ji and APS

ij have been extracted from the

arbitrary kth frontal frontal slices of ASP
jik and APS

ijk

which are the primary to secondary voltage transfor-
mation tensor and vice versa, respectively.

Since CSP
jik and CPS

ijk are of order 3, so are ASP
jik

and APS
ijk . Moreover, ASP

jik and APS
ijk can be respec-

tively related to CSP
jik and CPS

ijk by the following

∀k[(APS
ij )T ×1 C

SP
ji = IN×N ] (11)

∀k[(ASP
ji )T ×1 C

PS
ij = IM×M ] (12)

where ( )T denotes the transpose operator. Moreover,
IM×M and IN×N are identity order 2 tensors with
M×M and N×N as their dimensions respectively.
Note also that the the dimensions of ASP

ji and APS
ij

are M×N×K and N×M×K.

Similarly to the current/voltage arrays, the
impedance arrays of both self and mutual impedances
must be redefined for similar reasons. There-
fore they become tensors of order 3. For cover-
ing all impedances of the transformer, a total of
4 impedance tensors must be formulated. These
impedance tensors are the self impedance tensor of
primary windings, that of secondary winding the mu-
tual impedance tensors of coupling from secondary
to primary winding, and that of coupling in the in-
verse direction. We respectively denote them by
ZsP

i1i2k
, ZsS

j1j2k
, ZmPS

ijk and ZmSP
jik , where {i1} =

{1, 2, . . . , N}, {i2} = {1, 2, . . . , N}, {j1]}={1,2,...,M}
and {j2} = {1, 2, . . . ,M}. Their dimensions are
respectively N×N×K, M×M×K, N×M×K and
M×N×K. Their arbitrary elements, which can be
denoted respectively by ZsPijk, ZsSj1j2k, ZmPSijk , and

ZmSPjik , are the transformer’s impedance functions at

an arbitrary kth instant. Therefore these functions
are functions of complex frequency only and have
time independent coefficients. As a result, time de-
pendencies of the transformer’s parameters have been
taken into account while maintaining the impedance
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tensors purely in the s-domain and so is the obtained
model. This cannot be achieved if order 2 impedance
tensors are used similarly to [19], [20] and [24] because
a tensor of order 2 is mathematically equivalent to a
matrix.

For including the effects of frequency dependent
transformer parameters such as frequency depen-
dent resistances and inductances [7], and fractional
impedances, nonlinear impedance functions must be
adopted. In order to do so, we let ZsPijk, ZsSj1j2k, ZmPSijk ,

and ZmSPjik be defined as the s-domain arbitrary or-
der rational polynomial functions as given by (13)-
(16) where {qsPk} = {0, 1, 2, . . . , QsPk}, {qsSk} =
{0, 1, 2, . . . , QsSk}, {qmPSk} = {0, 1, 2, . . . , QmPSk},
qmSPk} = {0, 1, 2, . . . , QmSPk}, {rsPk} = {0, 1, 2, . . . ,
RsPk}, {rsSk} = {0, 1, 2, . . . , RsSk}, {rmPSk} =
{0, 1, 2, . . . , RmPSk} and {rmSPk} = {0, 1, 2, . . . ,
RmSPk}. Note also that QsPk,QsSk, QmPSk, QmSPk,
RsPk, RsSk, RmPSk and RmSPk can be arbitrary
integers. Moreover, αqsPk

, αqsSk
, αqmPSk

, αqmSPk
,

βrsPk
, βrsSk

, βrmPSk
and βrmSPk

are neither time nor
frequency dependent. The s-domain rational poly-
nomial function has been chosen as it can model
any nonlinear function. This includes the frac-
tional order polynomial function of the fractional
impedance. However, the integer order approxima-
tion methodologies of fractional Laplacian operator
such as Oustaloup’s approximation, regular Newton
process, and continued fraction expansion [28] must
be used for modelling such a fractional order polyno-
mial function.

ZsPi1i2k=


QsPk∑
q
sPk=0

[αqsPks
qsPk ]/

RsPk∑
rsPk=0

[βrsPk
srsPk ] ; i1 = i2

0 ; i1 6= i2
(13)

ZsSj1j2k=


Q

sSk∑
q
sSk=0

[αqsSks
q
sSk ]/

RsSk∑
rsSk=0

[βrsSk
srsSk ] ; j1 =j2

0 ; j1 6=j2
(14)

ZmPSijk =

QmPSk∑
qmPSkl0

[αqmPSk
sqmPSk ]/

RmPSk∑
rmPSk=0

[βrmPSk
srmPSk ]

(15)

ZmSPjik =

QmSPk∑
qmSPk=0

[αqmSPk
sqmSPk ]/

RmSPk∑
rmSPk=0

[βrmSPk
srmSPk ]

(16)
If we let ZsP

i1i2
, ZsS

j1j2
, ZmPS

ij and ZmSP
ji be

extracted from the arbitrary kth frontal frontal slices
of ZsP

i1i2k
, ZsS

j1j2k
, ZmPS

ijk and ZmSP
jik respectively,

the tensor algebraic voltage-current relationships of
the transformer can be given by

∀k[VPi = (IPi ×1 Z
sP
i1i2) + (ISj ×1 Z

mPS
ij )] (17)

∀k[VSj = (ISj ×1 Z
sS
j1j2) + (IPi ×1 Z

mSP
ji )] (18)

which can be alternatively expressed for modelling
the voltage-current characteristic of each terminal as

∀k[VPi = Ipi ×1 Z
eP
i1i2 ] (19)

∀k[VSj = ISj ×1 Z
eS
j1j2 ] (20)

where ZeP
i1i2

and ZeS
j1j2

have been respectively ex-

tracted from the arbitrary kth frontal frontal slices of
ZeP

i1i2k
and ZeS

j1j2k
which are the effective impedance

tensors of primary and secondary windings. Their di-
mensions are N×N×K and M×M×K respectively.

Since the effective impedance at any winding is the
summation of its self impedance and the transformed
mutual impedance, we can define ZeP

i1i2k
and ZeS

j1j2k

by the following tensor algebraic equations:

∀k[ZeP
i1i2 = ZsP

i1i2 + (ZmPS
ij ×1 Ci1i2 ×2 C

PS
ij )] (21)

∀k[ZeS
j1j2 = ZsS

j1j2 +(ZmSP
ji ×1Cj1j2×2C

SP
ji )] (22)

where ×2 stand for the mode 2 contraction prod-
uct operator. Moreover, Ci1i2 and Cj1j2 have been
respectively extracted from the arbitrary kth frontal
slices of Ci1i2k and Cj1j2k respectively. The dimen-
sions of Ci1i2k and Cj1j2k are respectively N×N×K
and M×M×K whereas their elements can be either
1 or 0. In particular, each of the elements of Ci1i2k

(Cj1j2k) if and only if i1 = i2(j1 = j2) and vice
versa. It should be mentioned here that Ci1i2k and
Cj1j2k must be introduced because two transforma-
tion tensors are necessary for transforming a mutual
the impedance tensor.

At this point, the proposed tensor algebraic model
of a transformer has been finally derived as a set of
tensor algebraic equations where (5) and (6) model
the current transformations. Moreover, (9) and (10)
((21) and (22)) model the voltage (impedance) trans-
formations, and (19) and (20) model the correspond-
ing terminal voltage-current characteristics. Finally,
(7), (8) and (13)-(16) define the corresponding tensor
elements. The proposed model can still be applied
to the conventional transformer by letting K = 1,
QsPk = 1, QsSk = 1, QmPSk = 1, QmSPk = 1,
RsPk = 0, RsSk = 0, RmPSk = 0 and RmSPk = 0.

In the subsequent section, the proposed model will
be applied for determining IPik’s, ISjk’s and VSjk’s
of some chosen recent transformers assuming that
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VPik’s have been given.

4. EXAMPLES OF APPLICATION

By applying our extensive proposed model and
keeping in mind that i1 = i2 = i and j1 = j2 = j,
IPik’s, ISjk’s and VSjk’s of an arbitrary transformer
with N primary and M secondary windings can be
given in terms of known VPik’s as

IPik = (ZsPii −
M∑
j=1

N∑
i=1

kPSijk
nPSijk

ZmPSij )−1VPik (23)

ISjk =
kSPjikVPik

nSPjik(ZsPii −
M∑
j=1

N∑
i=1

kPSijk
nPSijk

ZmPSij )−1VPik

(24)

VSjk =
kSPjikVPik

nSPjik

ZsPii −
M∑
j=1

N∑
i=1

kSPjik
nSPjik

ZmSPji

ZsPii −
M∑
j=1

N∑
i=1

kPSijk
nPSijk

ZmPSij

(25)

Here, 3 recent transformers, CMOS gyrator-C
based on-chip monolithic active transformer [7], dy-
namic transformer for flux-trapping flux-compression
generator (FT-FCG) [16], and fractional-order mu-
tual inductance, have been chosen. These trans-
formers respectively have frequency dependent pa-
rameters, time dependent parameters, and fractional
impedances. First, the CMOS gyrator-C based on-
chip transformer which has been treated in [24] will
be reconsidered using our extensive tensor algebraic
model which is more inclusive. This CMOS trans-
former employs a single input and double outputs.
Its frequency dependent parameters are the resis-
tances and inductances of the windings which are lin-
ear functions of frequency. The schematic diagram
and circuit realization of this transformer is depicted
in Fig. 1, which clearly shows that N =1 and M =
2.

Fig.1: Schematic diagram of the CMOS gyrator-
C based single input/double outputs on-chip mono-
lithic active transformer (left) and its circuit realiza-
tion (right) [7] .

Since this transformer has unidirectional couplings
from primary to secondary windings only, we have
found that

ZmPS11k = 0 (26)

ZmPS12k = 0 (27)

Therefore we have

IP1k =
VP1k

ZsP11k
(28)

IS1k =
kSP11kVP1k

nSP11kZ
sP
11k

(29)

IS2k =
kSP21kVP1k

nSP21kZ
sP
11k

(30)

However, couplings from primary to secondary wind-
ings do exist. Thus we have

VS1k =
VP1k

ZsP11k

(
kSP11kZ

sS
11k

nSP11k
− ZmSP11k

)
(31)

VS2k =
VP1k

ZsP11k

(
kSP21kZ

sS
21k

nSP21k
− ZmSP21k

)
(32)

Since the resistances and inductances this trans-
former are linear functions of frequency, they can be
given in the s-domain by RsP11k = R̂sP11ks, R

sS
11k =

R̂sS11ks, R
sS
22k = R̂sS22ks, R

mSP
11k = R̂mSP11k s, RmSP21k =

R̂mSP21k s, LsP11k = L̂sP11ks, L
sS
11k = L̂sS11ks, L

sS
22k = L̂sS22ks,

LmSP11k = L̂mSP11k s and RmSP21k = R̂mSP21k s where R̂sP11k,

R̂sS11k, R̂sS22k, R̂mSP11k , RmSP21k = R̂mSP21k s, L̂sP11k, L̂sS11k,

L̂sS22k, L̂mSP11k and R̂mSP21k are neither time nor frequency
dependent. As a result, ZsP11k , ZsS11k , ZsS22k , ZmSP11k

and ZmSP21k become nonlinear functions and can be
given as follows

ZsP11k = L̂sP11ks
2 + (LsP11k + R̂sP11k)s+RsP11k (33)

ZsP11k = L̂sP11ks
2 + (LsS11k + R̂sS11k)s+RsS11k (34)

ZsP22k = L̂sP22ks
2 + (LsS22k + R̂sS22k)s+RsS22k (35)

ZmSP11k = L̂mSP11k s2 + (LmSP11k + R̂mSP11k )s+RmSP11k (36)

ZmSP21k = L̂mSP21k s2 + (LmSP21k + R̂mSP21k )s+RmSP21k (37)

which are in terms of (13)-(16) with QsPk = 2,
QsSk = 2, QmPSk = 2, QmSPk = 2, RsPk = 0, RsSk
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= 0, RmPSk = 0 and RmSPk = 0.

Moreover, all coefficient terms of (33)-(37) are nei-
ther time nor frequency dependent as they are in
terms of R̂sP11k, R̂sS11k, R̂sS22k, R̂mSP11k , RmSP21k = R̂mSP21k s,

L̂sP11k, L̂sS11k, L̂sS22k, L̂mSP11k and R̂mSP21k which, in turn, de-
pend on the MOSFET’s biasing condition dependent
parameters. Those include transconductance, gm,
which is a function of bias current, the parasitic ca-
pacitances such as the gate to source capacitance, Cgs
and drain to source conductance, gds and cut-off fre-
quency, fT etc. [7], [28]. This is because MOSFET is
the basis component of this candidate on-chip trans-
former. Note that ksP11k , ksP21k and nsP21k depend on
the MOSFET’s biasing condition dependent param-
eters [7] for a similar reason. By these dependencies,

the values of R̂sS11k, R̂sS22k, R̂mSP11k , RmSP21k = R̂mSP21k s,

L̂sP11k, L̂sS11k, L̂sS22k, L̂mSP11k , R̂mSP21k ,ksP11k , ksP21k and nsP21k
can be changed with respect to the biasing condition
of MOSFET. If a CMOS transformer with different
topology is to be considered, other related parame-
ters of our model can be adjusted in response, such
as changing N = 2 which must be applied instead of
N = 1 if the transformer has 2 primary windings.

Since the parameters of this on-chip transformer
are time independent, so are its s-domain current
functions, voltage functions, and impedance func-
tions. Therefore Ip1 = Ip2 . . . = IpK , Is11 = Is12 . . . =
Is1K , Is21 = Is22 . . . = Is2K , Vs11 = Vs12 . . . = Vs1K ,
Vs21 = Vs22 . . . = Vs2K , ZsP111 = ZsP112 . . . = ZsP11K
, ZsS111 = ZsS112 . . . = ZsS11K , ZsS221 = ZsS222 . . . =

ZsS22K , ZmSP111 = ZmSP112 . . . = ZmSP11K and ZmSP211 =
ZmSP212 . . . = ZmSP21K . By using (28)-(32) with all
impedance functions as given by (33)-(37), our exten-
sive model based frequency responses of IP1k, IS1k,
IS2k, VS1k and VS2k can be determined and compared
to their BSIM3v3 based benchmarks obtained from
SPICE simulation of the transformer as depicted in
Fig. 2-6. Here, the 0.35µm level CMOS process tech-
nology of AMS has been chosen as the model pa-
rameterization and simulation basis since this trans-
former has been realized in the above 100 nm regime.
Similarly to [24], we use the aspect ratios of 111.11
and 55.56 for the winding transistors and coupling
transistors respectively. These transistors have been
biased by Vb = 1.4 V. Moreover, a sinusoidal wave-
form with the magnitude of 20mV has been chosen
as the input voltage and the simulation frequency has
been ranged from 1Hz to 100 MHz which lies within
the operating range of the transformer [7]. From
Fig. 2-6, strong agreements between the model based
responses and their corresponding BSIM3v3 based
benchmarks can be observed for several decades of
frequency. At this point, it can be seen that our ex-
tensive model is very applicable to the CMOS gyra-
torC based on-chip transformer similarly to its pre-
decessor [24] where more detailed analysis has been
proposed in this work.

Consider the candidate dynamic transformer
which has a single input and single output [16]. It
can be seen that N = 1 and M = 1 for this trans-
former. The schematic diagram of FT-FCG can be

Fig.2: Comparative frequency responses of IP1k: Model based response (♦), BSIM3v3 based benchmark (2).
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Fig.3: Comparative frequency responses of IS1k: Model based response (♦), BSIM3v3 based benchmark (2).

Fig.4: Comparative frequency responses of IS2k: Model based response (♦), BSIM3v3 based benchmark (2).
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Fig.5: Comparative frequency responses of VS1k: Model based response (♦), BSIM3v3 based benchmark (2).

Fig.6: Comparative frequency responses of VS2k: Model based response (♦), BSIM3v3 based benchmark (2).
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depicted as in Fig. 7 where the dynamic transformer
is composed of the stator coil and field coil which re-
spectively serve as the secondary and primary wind-
ing. Since this transformer has bidirectional coupling,
we have

ZmSP11k 6= 0 (38)

ZmPS11k 6= 0 (39)

Fig.7: The schematic diagram of FT-FCG (A) ar-
mature, (B) stator coil, (C) filed coil [16].

As a result, we obtained

IP1k = (ZsP11k +
kPS11kZ

mPS
11k

nPS11k

)−1VP1k (40)

IS1k =
ksP11k
nSP11k

(ZsP11k +
kPS11kZ

mPS
11k

nPS11k

)−1VP1k (41)

VS1k =
ksP11k
nSP11k

ZsS11k +
kSP11kZ

mSP
11k

nSP11k

ZsP11k +
kPS11kZ

mPS
11k

nPS11k

VP1k (42)

The parameters of this transformer are time de-
pendent, so it cannot be claimed that Ip1 = Ip2 . . . =
IpK , Is1 = Is2 . . . = ISK , VS1 = VS2 . . . = VSK ,
ZsP111 = ZsP112 . . . = ZsP11K , ZsS111 = ZsS112 . . . = ZsS11K ,
ZmSP111 = ZmSP112 . . . = ZmSP11K , ZmPS111 = ZmPS112 . . . =
ZmPS11K . However, since such parameters are frequency
independent ZsP11k , ZsS11k , ZmSP11k and ZmPS11k are sim-
ply linear functions and can be given by

ZsP11k = sLsP11k +RsP11k (43)

ZsS11k = sLsS11k +RsS11k (44)

ZmSP11k = sLmSP11k +RmSP11k (45)

ZmPS11k = sLmPS11k +RmPS11k (46)

These equations are also in terms of (13)-(16) but

with QsPk = 1, QsSk = 1, QmPSk = 1, QmSPk = 1,
RsPk = 0, RsSk = 0, RmPSk = 0 and RmSPk = 0.

At this point, IP1k, IS1k and VS1k can be numeri-
cally simulated against the frequency and k by using
MATHEMATICA based on the time dependent pa-
rameter values [16] as depicted in Fig. 8-10 where
the frequency is in terms of logarithmic value and
ranged from 0 to 6. On the other hand, k is ranged
from 1 to 16 as we let K = 16. Note also that the
resulting values of IP1k, IS1k and VS1k have been in-
terpolated and the cosinusoidal waveform with unity
magnitude has been adopted as the input voltage.
Moreover, the adjacent time instances, e.g. k = 1
and k = 2 etc., are 10-6 sec apart. From these fig-
ures, in addition to the frequency dependencies, time
dependencies of IP1k, IS1k and VS1k can be observed
and become strong when k approaches 16. This is
because the time dependencies of the dynamic trans-
former’s parameters are weak initially, but become
stronger as time goes by [16]. Before we proceed fur-
ther, it should be mentioned here that the previous
tensor algebraic models, including that proposed in
[24], cannot be conveniently applied in this scenario
as they use tensors of order 1 for the current/voltage
tensors and order 2 tensors for the impedance and
current/voltage transformation tensors. As a result,
the current/voltage functions become functions of
both complex frequency and time. Moreover, the el-
ements of the transformation tensors and the coef-
ficients of the impedance functions become time de-
pendent. Therefore the analysis can be cumbersome.

Fig.8: Numerically simulated time variant frequency
responses of Ipk.

Fig.9: Numerically simulated time variant frequency
responses of Isk.
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Fig.10: Numerically simulated time variant fre-
quency responses of Vsk.

Finally, the fractional-order mutual inductance
will be considered. Since this recent transformer has a
single input and a single output, we have N = 1 and
M = 1. Therefore primary current, secondary cur-
rent, and secondary voltage can also be determined
in terms of the primary voltage by using the proposed
model as given by (40)-(42). Note also that ZsP111 =
ZsP112 . . . = ZsP11K , ZsS111 = ZsS112 . . . = ZsS11K , ZmSP111 =
ZmSP112 . . . = ZmSP11K and ZmPS111 = ZmPS112 . . . = ZmPS11K

, IP1 = IP2 . . . = IPK , IS1 = IS2 . . . = ISK and
VS1 = VS2 . . . = VSK since the parameters of this
transformer are time independent. By using the
s-domain mathematical definition of the fractional
impedances, ZsP11k , ZsS11k , ZmSP11k and ZmPS11k can be
given as follows

ZsP11k = sαLsP11k (47)

ZsS11k = sβLsS11k (48)

ZmSP11k = sγSPLmSP11k (49)

ZmPS11k = sγPSLmPS11k (50)

where α, β, γSP and γPS are not strictly integers but
can be fractional according to [17]. Therefore ZsP11k ,
ZsS11k , ZmSP11k and ZmPS11k are fractional order s-domain
polynomial functions.

If we let α=β=γSP=γPS = 0.5, which implies that
the fractional-order mutual inductance is symmetric
and all impedances are of half order then ZsP11k , ZsS11k ,
ZmSP11k and ZmPS11k can be given in terms of the integer
order rational polynomial functions by using the first
order continued fraction expansion [29] as

ZsP11k =
3LsP11ks+ LsP11k

s+ 3
(51)

ZsS11k =
3LsS11ks+ LsS11k

s+ 3
(52)

ZmSP11k =
3LmSP11k s+ LmSP11k

s+ 3
(53)

ZmPS11k =
3LmPS11k s+ LmPS11k

s+ 3
(54)

If the fifth order continued fraction expansion has
been adopted ZsP11k , ZsS11k , ZmSP11k , and ZmPS11k become

ZsP11k=

11LsP11ks
5 + 165LsP11ks

4 + 462LsP11ks
3

+ 330LsP11ks
2 + 55LsP11ks+ LsP11k

s5+55s4+330s3+462s2+165s+11
(55)

ZsS11k=

11LsS11ks
5 + 165LsS11ks

4 + 462LsS11ks
3

+ 330LsS11ks
2 + 55LsS11ks+ LsS11k

s5+55s4+330s3+462s2+165s+11
(56)

ZmSP11k =

11LmSP11k s5+165LmSP11k s4+462LmSP11k s3

+ 330LmSP11k s2 + 55LmSP11k s+ LmSP11k

s5+55s4+330s3+462s2+165s+11
(57)

ZmPS11k =

11LmPS11k s5+165LmPS11k s4+462LmPS11k s3

+ 330LmPS11k s2 + 55LmPS11k s+ LmPS11k

s5+55s4+330s3+462s2+165s+11
(58)

With the fifth order Oustaloup’s approximation
[28] ZsP11k , ZsS11k , ZmSP11k , and ZmPS11k can be now
respectively given by (59)-(62). It can be seen that
(51)-(62) are in terms of (13)-(16), with QsPk = 1,
QsSk = 1, QmPSk = 1, QmSPk = 1, RsPk = 1,
RsSk = 1, RmPSk = 1 and RmSPk = 1 for (51)-
(54). QsPk = 5, QsSk = 5, QmPSk = 5, QmSPk = 5,
RsPk = 5, RsSk = 5, RmPSk = 5, and RmSPk = 5
for (55)-(62)

ZsP11k=

10LsP11ks
5 + 298.5LsP11ks

4 + 1218LsP11ks
3

+ 768.75LsP11ks
2 + 74.97LsP11ks+ LsP11k

s5+74.95s4+768.5s3+1218s2+298.5s+10
(59)

ZsS11k=

10LsS11ks
5 + 298.5LsS11ks

4 + 1218LsS11ks
3

+ 768.75LsS11ks
2 + 74.97LsS11ks+ LsS11k

s5+74.95s4+768.5s3+1218s2+298.5s+10
(60)

ZmSP11k =

10LmSP11k s5 + 298.5LmSP11k s4 + 1218LmSP11k s3

+ 768.75LmSP11k s2 + 74.97LmSP11k s+ LmSP11k

s5+74.95s4+768.5s3+1218s2+298.5s+10
(61)
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ZmPS11k =

10LmPS11k s5 + 298.5LmPS11k s4 + 1218LmPS11k s3

+ 768.75LmPS11k s2 + 74.97LmPS11k s+ LmPS11k

s5+74.95s4+768.5s3+1218s2+298.5s+10
(62)

Let us assume that the fractional-order mutual in-
ductance is connected to a 1 Ω resistive load where
a cosinusoidal waveform with unity magnitude has
been adopted as its input voltage. The frequency
responses of the load voltage Vload can be numer-
ically simulated by using our extensive tensor alge-
braic model based solutions, the first and fifth or-
der continued fraction expansion, and the fifth or-
der Oustaloup’s approximation under the assumption
that α = β = γSP = γPS = 0.5 and LsP11k = LsS11k =
LmSP11k = LmPS11k µH [17] as shown in Fig. 11, where the
frequency is in term of logarithmic value and ranged
from 0 to 3. Moreover, the frequency responses of the
half order fractional-order mutual inductance based
Vload and the frequency responses of Vload calculated
using the traditional matrix-vector linear algebraic
approach have also been included.

From Fig. 11, it can be seen that the half or-
der fractional-order mutual inductance based Vload
displays a significantly different behaviour from that
calculated using the traditional matrix-vector linear
algebraic approach (fewer attenuation slopes) due to
the influences of fractional impedances. This demon-
strates the modelling failure of the traditional ap-
proach. On the other hand, our extensive tensor alge-
braic model based Vload’s are closer to the half order
fractional-order mutual inductance based one which
is our benchmark, particularly when the fifth order
rational approximations have been applied. This ver-
ifies the advantages of our approach over the tradi-
tional approach.

It can also be seen that the error of the first or-
der continued fraction expansion based Vload is higher
than those of the fifth order continued fraction expan-
sion based and fifth order Oustaloup’s approximation
based Vload’s. Since both fifth order rational approx-
imations based Vload’s are totally coincident, as can
be seen from the overlap of the red and magenta lines
in Fig. 11, they have equal amounts of error. There-
fore it can be stated that the error of the model based
Vload from its half order fractional-order mutual in-
ductance based benchmark is induced by the ratio-
nal approximation error of s0.5 and such error can
be reduced by using higher order rational approxi-
mations despite their higher computational complex-
ities. This is not surprising, because a higher order
approximation gives a better result for a larger fre-
quency range [29]. Therefore stronger agreement be-
tween our model based Vload and its benchmark can
be expected if higher order approximations are used.
Moreover, different approximation methodologies of
equal orders yield insignificantly different results, un-

like those of different orders.

Fig.11: Comparative frequency responses of Vload:
Half order fractional-order mutual inductance based
response (Green), Traditional matrix-vector linear al-
gebraic approach based response (Blue), The first or-
der continued fraction expansion/extensive tensor al-
gebraic model based response (Yellow), The fifth order
continued fraction expansion/ extensive tensor alge-
braic model based response (Magenta), The fifth order
Oustaloup’s approximation/extensive tensor algebraic
model based response (Red).

5. DISCUSSION

In this section, the effects of the failure of Kron’s
postulate on the power invariant and the validity of
duality invariant will be discussed. After determining
all of the transformer’s current and voltage tensors,
the electrical powers at all primary and secondary
windings can be obtained. The arrays of powers at
primary and secondary windings, i.e. pPik and pSjk

, are order 2 tensors which can be obtained by using
the determined currents and voltage tensors as

pPik = L−1[VPik]⊗ L−1[IPik] (63)

pSjk = L−1[VSjk]⊗ L−1[ISjk] (64)

where L−1[ ] and ⊗ stand for the inverse Laplace
transform operator and the Hadamard product oper-
ator respectively.

It can be seen from (63) and (64) that each element
of pPik and pSjk , pPik and pSjk, can be respectively
given as follows

pPik = L−1[VPik]L−1[IPik] (65)

pSjk = L−1[VSjk]L−1[ISjk] (66)

Therefore, by the failure of Kron’s postulate on
power invariant [22] and the convolution theorem,
we have found that the voltage-current relationship
given by (67), where * stands for the convolution in
s-domain is invalid.
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∀k[

N∑
i=1

[VPik ∗ IPik] =

M∑
j=1

[VSjk ∗ ISjk]] (67)

However, because of the validity of the duality in-
variant [22], the following voltage-current relationship
is always valid

∀k[

N∑
i=1

[VPik ∗ IPik] +

N∑
i=1

[VPDik ∗ IPDik]

=

M∑
j=1

[VSjk ∗ ISjk] +

M∑
j=1

[VSDjk ∗ ISDjk]]

(68)

where VPDik , IPDik , VSDik , and ISDik denote the
primary voltage, primary current, secondary voltage,
and secondary current of arbitrary ith primary and
jth secondary winding at an arbitrary kth instant of
the dual circuit of transformer of interest. Such a
dual circuit is also a transformer, but with specifically
altered configuration, e.g. interchanged primary and
secondary windings [30].

6. CONCLUSIONS

This research proposes an extensive s-domain ten-
sor algebraic model that is applicable to recent trans-
formers which employ the unconventional character-
istics. Unlike [19], [20] and [24], the impedance and
current/voltage transformation tensors are of order 3
and the current/voltage tensors are of order 2. Be-
cause of this and other features, our proposed model
is more inclusive than the traditional matrixvector
algebraic approaches and previous tensor algebraic
models. It is more complicated because tensors with
higher order have been assumed. It can be applied
to transformers with unconventional characteristics
with higher accuracy, but more computational ef-
fort is required. Applications of the proposed model
to typical recent transformers with unconventional
characteristics, namely CMOS gyrator-C based ac-
tive transformer, the dynamic transformer for FT-
FCG, and the fractional-order mutual inductance,
have been shown. A discussion on the effects of the
failure of Kron’s postulate and the validity of dual-
ity invariant to voltage-current relationships of the
transformer has also been given. Therefore this work
is beneficial to the analysis and design of circuits
and systems involving recent transformers in prac-
tice. Compared to the conventional matrix-vector
approach and previous tensor algebraic approaches,
our extensive tensor algebraic modelling is more effi-
cient and up to date for the mathematical modelling
of recent transformers.
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