
Test Input Data Generation for Choiceless Program Nets 37

Test Input Data Generation for Choiceless
Program Nets

Biao Wu1 and Qi-Wei Ge2

ABSTRACT

Software testing is an important problem in de-
signing a large software system and this problem is
difficult to solve due to its computational complex-
ity. Generating test input data is an effective way
to approach this problem, and we try to use pro-
gram net to find test input data. In our previous
work, as the first step towards solving software test-
ing problem, we have proposed algorithms to divide a
whole program net into subnets that can structurally
cover the original one based on a divide-and-conquer
method. This paper aims to solve the remaining task
of our approach, which is how to find test input data
for each subnet to be called choiceless program net.
First, definitions of program nets are extended and
the properties of choiceless program nets are anal-
ysed. Then, polynomial algorithms are proposed to
get all constraint conditions of any given choiceless
program nets. Finally, a method to generate test in-
put data under the obtained constraint conditions is
proposed by adopting an SMT (Satisfiability Modulo
Theory) solver called Z3 prover. An example is given
to show the usefulness of our method.

Keywords: Program Net, Software Testing, Con-
straint Condition, SMT Solver

1. INTRODUCTION

Software testing is done to find bugs, defects, or
errors in a software program [1] and is indispensable
for all software development. It is a critical element
of software quality assurance and represents the fi-
nal review of specification, design, and coding [2].
Path testing, an important aspect of software test-
ing, searches for suitable test data that covers every
possible path in the software under test. Generally,
software testing takes a great deal of computational
time and is an NP-complete problem [3]. Among so
many testing activities, test data generation is one of
the most intellectually demanding tasks and also is

Manuscript received on June 26, 2019 ; revised on September
4, 2019.
Final manuscript received on October 26, 2019.
1 The author is Graduate School of East Asian Studies, Ya-

maguchi University, Yamaguchi-shi, 753-8514 Japan., E-mail:
w501sn@yamaguchi-u.ac.jp
2 The author is Faculty of Education, Yamaguchi University,

Yamaguchi-shi, 753-8513 Japan., E-mail: gqw@yamaguchi-
u.ac.jp
DOI 10.37936/ecti-cit.2020141.197859

one of the most critical ones, since it has a strong im-
pact on the effectiveness and efficiency of the whole
testing process [4]. It is not surprising that a great
amount of research effort in the past decades has been
spent on test data generation. As a result, a good
number of different techniques of test data genera-
tion have been advanced and investigated intensively
[4]: such as (a) structural testing using symbolic ex-
ecution, (b) model-based testing, (c) combinatorial
testing, (d) random testing and its variant of adap-
tive random testing, and (e) search-based testing. In
this paper, we develop a new method for test data
generation by adopting a so-called Data-Flow Pro-
gram Net [5].

As a kind of graph, a data-flow program net (pro-
gram net or net for short) is an important way to
study data-flow program [5]. A program net can be
expressed by a directed graph and can be specially
tuned for data-flows through arithmetic and logical
operations. Figure 1 shows a general program net. In
a program net, a node represents an operator, fork,
switch, and so on. An edge represents a communica-
tion channel of tokens between nodes. A token repre-
sents an abstract datum whose structure varies from
edge to edge [6].

Fig.1: An example of program net to calculate the
area πr2 of circle, where, r is the radius of circle.

Treating a program as a program net, we try to
apply program nets to our software testing prob-
lem theoretically through two steps: (1) to divide a
program net into subnets, which can together struc-
turally cover all the nodes of the program net, and

38 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.1 May 2020

(2) for each subnet, generate test input data through
analysis of the properties of the subnet. All of the
paths of a program may be tested if each subnet can
execute under the obtained test input data in turn.
Step (1) has been accomplished in our previous work
[7] which can (i) treat a program as a program net,
(ii) find and delete back edges to construct an acyclic
program net, and (iii) generate a set of subnets that
cover all of the nodes of the acyclic program net. This
paper aims to do the remaining task (Step (2)), which
is how to find test input data for each subnet. Specif-
ically, the expected outcome in this paper is to find
a set of certain variable values for each obtained sub-
net under which all parts of the subnet can be ex-
ecuted. In a subnet obtained in our previous work
[7], a SWITCH-node representing a switch operator
is fixed only in one of the two states, True and False.
Thus we call these subnets Choiceless Program Nets
(Choiceless Nets for short) in this paper. Since find-
ing test input data is time-consuming and often tech-
nically difficult to perform [8] directly for a whole
program (program net), this paper focuses on such
choiceless program nets that have test input data.

This paper is organized as follows: Section 2 in-
troduces definitions of general program nets and the
subnets generated in our previous works and gives a
brief introduction to the Satisfiability Modulo Theo-
ries used in this paper. In Section 3, the properties of
choiceless program nets are analyzed and algorithms
are shown to obtain the constraint conditions from a
choicless program net. Then a method is presented
to find test input data by using a tool, the Z3 SMT
solver, for a choicless program net. In Section 4, an
example is given to show how to find test input data
by using the provided algorithms and the Z3 SMT
solver.

2. PRELIMINARY

2.1 Program Net

A program net [9] is denoted by PN=(V,E, α, β),
where V is a set of nodes consisting of AND-nodes
(©), OR-nodes (4 or a semicircle), SWITCH-nodes
(◦5), and E is a set of directed edges between nodes.
The token (•) represents a single datum and token
distribution dτ=(dτe1 , d

τ
e2 , · · ·, d

τ
e|E|

) that expresses to-

ken numbers on each edge ei at time τ . α is the token
threshold of node firing on the input edges. β is the
token threshold of node firing on the output edges.
If a program net PN is given with an initial token
distribution d0 onto edges, then it is called a marked
program net and denoted by MPN=(PN, d0). PN
is called acyclic if there are no directed circuits and
PN is called SWITCH-less if there are no SWITCH-
nodes.

Definition 1 [10]: Let v be a node, with eip and eop
as its data-flow input edge and output edge, respec-
tively.

(i) An AND-node vAND is firable with respect to
dτ if each input edge eip satisfies dτeip≥αeip . If
a firable node is fired, αeip tokens are removed
from each input edge eip and βeop>0 tokens are
placed on each output edge eop. The start node
s fires only once.

(ii) An OR-node vOR is firable with respect to dτ

if one input edge eip satisfies dτeip≥αeip . When
an OR-node is fired, αeip tokens are removed
from an arbitrarily selected input edge eip but
not from the other, and βeop tokens are placed
on the output edge eop.

(iii) A SWITCH-node vSW is firable with respect
to dτ if its input data-flow edge eip satisfies
dτeip≥αeip and its control-flow edge ectrl satis-
fies dτectrl≥1. If the value of the control token is
True (or False), then the token on the data in-
put is directed to the output terminal True (or
False) and the control token is removed. 2

Definition 2 [11]: Let MPN be a marked program
net.

(i) If node v is firable with respect to token distri-
bution d then v is called d-firable.

(ii) A node sequence σ=v1v2· · ·vk is a firing se-
quence if and only if (iff for short) vi is di−1-
firable and di results from di−1 by firing vi.

(iii) An MPN is called terminating iff all of its firing
sequences are of finite length k<∞. 2

Definition 3 [11]: An MPN is token self-cleaning
(or self-cleaning for short) iff the following two con-
ditions hold.

(i) MPN is terminating;
(ii) There is no token remaining on the edges after

execution of any terminating firing sequence. 2

Definition 4 [12]: Let v1 and v2 be two nodes of
PN .

(i) If there is a directed path from v1 to v2, then
v1 is predecessor of v2 and v2 is successor of v1.
The sets of predecessors and successors of node v
are denoted by Pre(v) and Suc(v), respectively.

(ii) If (v1, v2)∈E, then v1 is an immediate predeces-
sor of v2 and v2 is an immediate successor of v1.
The sets of immediate predecessors and imme-
diate successors of node v are denoted by IP (v)
and IS(v), respectively. 2

In this paper, we assume that all marked program
nets are self-cleaning program nets with d0=0 as in
our previous work [7]. We have designed algorithms

to generate subnets (denoted by {P̂N i}) that can
structurally cover all the nodes of a given program net
[7]. These algorithms mainly carry out the following
two steps: (1) making the given program net acyclic,
and (2) generating subnets based on the acyclic pro-
gram net. For example, for the program net shown
in Figure 1, we get the subnets set shown in Figure
2.

Test Input Data Generation for Choiceless Program Nets 39

Fig.2: Generated subnets of Figure 1.

2.2 SMT Problem

Satisfiability Modulo Theory (SMT for short) is
one of the central problems with both theoretical and
practical interests in computer science. It is the prob-
lem to determine whether a formula expressing con-
straint conditions has a solution [13]. For example,
a solution of the following formula is a set of vari-
able values, e.g. (x, y, z)=(1, 2, 1), which makes the
formula satisfiable.

x+y≥0∧(x=z⇒x+z>1)∧¬(x>y)

In recent years, there has been enormous progress
in dealing with a large scale of problems that can be
solved by SMT solvers [13], such as Z3, Yices, and so
on [14, 15]. If the constraint conditions of test input
data for each subnet can be obtained, we need only
to use SMT solvers to find the test input data, which
means our software testing problem can be solved.
Therefore, we try to generate the constraint condi-
tions and apply SMT solvers to find test input data
in this paper.

3. CONSTRAINT CONDITIONS GENERA-
TION

In this section, we provide algorithms to generate
constraint conditions for the choiceless program nets
obtained in Ref. [7] by analyzing the nets.

3.1 Analysis of Choiceless Program Net

We have structurally constructed a set of subnets
that can cover all nodes for a given program net in
our previous work [7]. The program nets have been
represented around the structure so far without pay-
ing much attention to the detailed behavior of the
nodes. However, in order to generate test input data,
we must mine how the data is concretely operated

upon and how it flows in the subnet. Since the OR-
nodes and SWITCH-nodes function as fixed opera-
tions, merging input data and switching data to True
or False terminals respectively, we need only to clar-
ify the detailed description of the operations for the
AND-nodes.

The operation at an AND node vAND can be re-
garded as one of three operation forms: (a) han-
dling logical-operation, (b) executing arithmetic-
operation, or (c) duplicating its input data. Logi-
cal and arithmetic operators are generally those in-
cluded in the list, O=(<,>,≤,≥, !, !=,&&, ||,&, |,
ˆ, =,+,−, ∗, /,%,�, �,++,−−,==,∼), as shown
in Table 1. This operator list can be further di-
vided into logical and arithmetic operator sublists,
Ol=(<,>,≤,≥, !, !=,&&, ||,==) and Oa=(&, |,ˆ,=,
+,−, ∗, /,%,�,�, ++,−−,∼) respectively.

To obtain constraint conditions, we need to express
operation results for all the AND-nodes. Hence it is
essential (i) to indicate from which input edge the
input data comes, and (ii) to clearly specify whether
the input data should be placed before or after the
operator at the AND-node. Although an AND-node
generally may contain three or more input edges, we
limit any AND-node to one that possesses at most
two input edges in this paper in order to conveniently
express constraint conditions. We can do so due to
the fact that any AND-node with three or more input
edges can be simply transformed to ones with two
input edges as shown in Figure 3.

Table 1: Common operator list O.

Index Operator Description
0 < less than
1 > greater than
2 ≤ less than or equal to
3 ≥ greater than or equal to
4 ! logical not
5 != not equal to
6 && logical and
7 ‖ logical or
8 & bitwise and
9 | bitwise or
10 ˆ bitwise xor
11 = assignment
12 + addition
13 − subtraction
14 ∗ multiplication
15 / division
16 % modulus
17 � left shift
18 � right shift
19 ++ increment
20 −− decrement
21 == equal to
22 ∼ bitwise not

Based on the previous discussions, we extend an
ordinary program net to an Exhaustive Program Net
in the following definition.

Definition 5: A program net is called an Exhaustive
Program Net and denoted by EN=(V,E, g, o, r, α, β)
if each AND-node possesses at most two input edges

40 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.1 May 2020

Fig.3: Transform operation.

and furthermore the following conditions are satisfied:

(i) V is a set of nodes consisting of AND-nodes,
OR-nodes and SWITCH-nodes;

(ii) E is a set of directed edges between nodes. The
solid arrow (−→) represents a dataflow-edge and
the hidden arrow (99K) shows a controlflow-edge;

(iii) g(v) expresses the operation result at node v;
(iv) o(v) expresses the operator at node v as follows:

o(v)=


op∈O, v is an AND-node with logical

or arithmetic operator

NULL, otherwise

(v) r(e) is marked on an input edge e of v as follows:

r(e)=


1© or 2©, v is an AND-node with logical

or arithmetic operator

NULL, otherwise

Suppose e=(v′, v) and g(v′) are the operation
result of v′ flowing through e to v. (i) If r(e)= 1©,
g(v′) is placed before o(v) (i.e., “g(v′)o(v)” is
operated at v); (ii) If r(e)= 2©, g(v′) is placed
after o(v); (iii) If r(e)=NULL, g(v′) just passes
through v;

(vi) α is token threshold of node firing on the input
edges and β is token threshold of node firing on
the output edges. 2

Fig.4: Exhaustive program net EN of Figure 1.

Hereafter, a set of subnets {P̂N i} (choiceless nets)
obtained in [7] is expressed by a set of exhaustive nets

and denoted by {ẼN i}. Figure 4 shows the exhaus-
tive net of Figure 1 and Figure 5 shows the choiceless

exhaustive subnets of Figure 4, ẼN1 and ẼN2. In
the following discussions, when we say choiceless net

denoted by ẼN , we mean a choiceless exhaustive sub-
net.

Fig.5: Choiceless nets ẼN1 and ẼN2 of Figure 4.

Let’s see how to use o(v) and r(e) to express
operation results of the nodes in Figure 6. v3
has two input edges, e1 and e2 marked with 1©
and 2© respectively, and hence the operation re-
sult of v3 is g(v3)=g(v1)o(v3)g(v2)=g(v1)>g(v2) ac-
cording to Definition 5 (v). For Figure 6 (b),
g(v5)= g(v4)o(v5)=g(v4)++ holds, since r(e3)= 1©.
Also g(v7)=o(v7)g(v6)=!g(v6) due to r(e4)= 2©. In
this way, it is possible to get a series of expres-
sions of operation results that are what we want to
find, the constraint conditions. Particularly, con-

straint conditions for a choiceless net ẼN are the
expressions of operation results of control-flow in-
put nodes, which must meet the T or F states
of each of the related SWITCH-nodes in a choice-
less net ẼN . For ẼN2 shown in Figure 5 (b),
the operation results of control-flow input nodes,
v4, are g(v4)=g(v1)o(v4)g(v2)=(r>0). Since all the
SWITCH-nodes, v5 and v6, have only T terminals,
(r>0) is the constraint condition.

Fig.6: Example AND-nodes for expression of oper-
ation result.

Test Input Data Generation for Choiceless Program Nets 41

Choiceless nets have the properties shown in the
following propositions.

Proposition 1: Let ẼN be a choiceless net. If all
the SWITCH-nodes fire and further output data to

their terminals that exist in ẼN under a set of input

data, then all the nodes of ẼN can fire. 2

Proof : Since each SWITCH-node fires and outputs

data to its T or F terminal that is included in ẼN , we
can fire each node in such a way: (i) firing the start
node and deleting it, and then (ii) recursively firing
the source nodes and deleting them. Finally all the
nodes will be deleted. In other words, all the nodes

can fire, since there is no directed circuit in ẼN . 2

Proposition 2: Let vSW be a SWITCH-node in

a choiceless net ẼN and Suc(vSW) be a set of its
successor nodes. If Suc(vSW) contains no SWITCH-
nodes, then there exist no constraint conditions in the
subnet induced by Suc(vSW). 2

This proposition obviously holds, so we can simply
delete such subnets induced by Suc(vSW) in generat-
ing constraint conditions.

From the previous discussion, we know that each
SWITCH-node corresponds to one constraint condi-
tion, and hence our next work is to obtain such all
constraint conditions for each SWITCH-node exist-
ing in a choiceless net ẼN . In order to facilitate the
generation of constraint conditions, we construct an
adjacency matrix A to express all of the information

of a choiceless net ẼN . The following adjacency ma-
trix A is constructed to represent the net of Figure 5
(b).

A=



1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0
0 0 1 0 2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 3 0 1 0 0 0 0 0
0 0 0 0 0 0 3 0 2 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 −14 0 2 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 −14 1 0
0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 1



We now give a detailed explanation of how to con-
struct the adjacency matrix A. Suppose i6=j holds
below. First, diagonal values {aii} of A express the
types and operations of nodes as follows:

aii<0, vi is AND-node with logical or arithmetic

operator and o(vi)=O[−aii]
aii=1, vi is other AND-node

aii=2, vi is OR-node

aii=3, vi is SWITCH-node

Then non-diagonal values {aij} express the types of

edges between nodes.{
aij=−1, edge (vi, vj) is control-flow edge

aij>0, edge (vi, vj) is data-flow edge

Furthermore, when aij>0: (i) if ajj<0, ajj expresses
the operation of the node vj ; (ii) if ajj>0, aij that
means there is an edge (vi, vj) such that:{

aij=r(e), edge e=(vi, vj) and ajj<0

aij=1, edge e=(vi, vj) exists and ajj>0

Finally, we represent the state of SWITCH-node (T
or F) in A. The following rule is applied only when
node vi is a SWITCH-node (aii=3).{
aij=r(e)×10, edge e=(vi, vj) is F terminal of vi

aij=r(e), edge e=(vi, vj) is T terminal of vi

Note that the values of r(e), 1© and 2©, are replaced
by 1 and 2 in the matrix A.

3.2 Generation of Constraint Conditions

The entire process of applying program nets to
solving our software testing problem is shown in Fig-
ure 7. Among them, (a) has been solved by the poly-
nomial algorithms in our previous work [7]. What we
need to do next is (b) and (c), which are generating
constraint conditions and finding test input data.

Fig.7: The procedures of generating test input data.

Since each SWITCH-node corresponds to one con-

straint condition in a choiceless net ẼN , we can find a
way to obtain such all constraint conditions by doing
two steps: (1) determining the boolean value of the
corresponding constraint condition of each SWITCH-
node, and then deleting sink nodes iteratively until all
the sink nodes become SWITCH-nodes, which can be
done according to Proposition 2; (2) designing algo-
rithms to obtain constraint conditions from the net
obtained in step (1). Algorithm 1 is used for step (1).

Algorithm 1 Construction of Simplified Program
Net

Require: ẼN=(V,E, o, g, r, α, β), A of ẼN
Ensure: Simplified Program Net G

42 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.1 May 2020

1: while V 6=φ do
2: take out a node vx from V
3: if vx is a SWITCH-node (axx=3) then
4: if axy<10 where x 6=y then
5: q(vj)←true where ajx=−1
6: else
7: q(vj)←false where ajx=−1
8: end if
9: end if
10: end while
11: matrix B←A
12: G←ẼN
13: while a sink node vx that is not a SWITCH-node

(bxx 6=3) exists in G do
14: G←G−{vx}
15: update B (delete vx-related row and column)
16: end while
17: Output G

Theorem 1: Let ẼN be a choiceless net and G be
the simplified net obtained by Algorithm 1.
(1) All sink nodes in G are SWITCH-nodes.
(2) The computational time complexity is O(|V |2). 2

Proof : (1) It is obvious from lines 13-16 of the algo-
rithm. (2) The execution of lines 1-10 takes O(|V |2),
since lines 1-10 execute |V | iterations and each itera-
tion takes |V | times to search for A. Lines 13-16 ex-
ecute at most |V | iterations, and each iteration takes
at most |V | times to search a sink node and 2|V | times
to delete the row and the column, thus the execution
of lines 13-16 also takes O(|V |2). Therefore, the total
computational time complexity is O(|V |2). 2

Algorithm 2 is used for step (2).

Algorithm 2 Generation of Constraint Conditions

Require: G, adjacency matrix B of G
Ensure: Constraint conditions set CCS
1: mark all nodes “unused”
2: queue Q←φ
3: enqueue s (start node of G) to Q
4: while Q 6=φ do
5: dequeue an element vi from Q
6: if there exists an output “unused” node vj from vi then
7: if bjj > 0 then
8: if bjj=1 then
9: if vj has no “unused” input node then
10: g(vj)← g(vi)
11: mark vj “used”
12: enqueue vj to Q
13: end if
14: else if vj is OR-node (bjj=2) then
15: if vj is “unused” then
16: g(vj)← g(vi)
17: mark vj “used”
18: enqueue vj to Q
19: end if
20: else if vj is SWITCH-node (bjj=3) then
21: if vj is “unused” then
22: g(vj)← g(vx) where bxj = 1
23: mark vj “used”
24: enqueue vj to Q
25: end if
26: end if
27: else if bjj<0 then
28: if vj has no “unused” input node then
29: if bij=1 then

30: g(vj)← g(vi)O[−bjj]
31: else if bij=2 then
32: g(vj)← O[−bjj]g(vi)
33: else if bij=1 and bxj=2 then
34: g(vj)← g(vi)O[−bjj]g(vx)
35: else if bij=2 and bxj=1 then
36: g(vj)← g(vx)O[−bjj]g(vi)
37: end if
38: enqueue vj to Q
39: if vj has control output edge (bjx=−1) then
40: if q(vj) = true then
41: CCS ← CCS ∪ {g(vj)}
42: else if q(vj) = false then
43: CCS ← CCS ∪ {¬g(vj)}
44: end if
45: end if
46: end if
47: end if
48: end if
49: end while
50: Output CCS

Theorem 2: Let ẼN be a choiceless program net, G

be the simplified net constructed from ẼN by Algo-
rithm 1, and CCS be the set of constraint conditions
obtained by Algorithm 2.
(1) If there exists a set of test input data satisfying

CCS, then all the nodes of ẼN can fire.
(2) The computational time complexity is O(|V |2). 2

Proof : (1) If there exists a set of test input data sat-
isfying CCS, then each SWITCH-node fires to output

data to its T or F terminal included in ẼN . Accord-
ing to Proposition 1, all the nodes can fire. (2) The
execution of lines 4-49 takes O(|V |2), since lines 4-49
execute at most |V | iterations and each iteration takes
at most |V | times to calculate the operation result at
lines 6-26. It takes at most 2|V | times to generate
constraint condition at lines 27-37 when searching in
B. Therefore, the computational time complexity is
O(|V |2). 2

By using Algorithm 2, we can obtain all constraint

conditions of ẼN2 of Figure 5 (b). As a result, the
constraint conditions can be synthesized as F : r>0.
In the following discussions, we explain how to find a
solution satisfying such F .

4. TEST INPUT DATA GENERATION

In this section, we aim to concretely generate test
input data from the constraint conditions obtained in
Section 3.

Till now, many SMT solvers have been developed
to find a solution satisfying a constraint condition.
Well-known SMT solvers include Z3 prover, Yices,
SMT-RAT, and so on. The Z3 prover is a high per-
formance theorem prover developed by Microsoft Re-
search and can be used to check the satisfiability of
logical formulas over one or more theories [15].
Z3 prover is such a useful and convenient tool be-

cause (i) it can handle decimals, (ii) it can handle
multiplication and division between variables, (iii)
one needs only to write constraint conditions without
solving the equation, and (iv) it has been developed

Test Input Data Generation for Choiceless Program Nets 43

as a package for the Python programing language and
it can be used conveniently. Therefore, we chose the
Z3 prover for generating test input data for choiceless
nets.

Fig.8: The program for solving F using the Z3
prover.

Figure 8 shows a short program to solve F : r>0
given in the last section. It is solved by using the
Z3 prover in Python IDLE (Integrated Development
and Learning Environment). The test input data r=1
can be obtained by executing this program for the
choiceless net of Figure 5 (b). Similarly for the net of
Figure 5 (a) with constraint conditions, ¬(r>0), the
test input data r=0 can be obtained.

Fig.9: A program net PN to decompose a positive
integer into prime factors.

Here, we show an example by applying our algo-
rithms and the Z3 prover to generate a set of test
input data for the program net PN shown in Figure
9. First, applying our previously documented method

[7], we get the acyclic net P̂N shown in Figure 10
whose corresponding exhaustive net EN is shown in

Figure 11, together with four subnets, ẼN1∼ẼN4

that structurally cover the original net of Figure 9.

Second, the simplified nets ẼN
′
1∼ẼN

′
4 of

ẼN1∼ẼN4 are constructed by executing Algorithm

Fig.10: Acyclic program net P̂N of Figure 9.

Fig.11: Exhaustive program net EN of Figure 10.

Table 2: Constraint conditions and test input data.

Nets Constraint Conditions Test Input Data

ẼN
′
1 ¬(n≥2) n=1

ẼN
′
2 (n≥2)∧(¬(n!=2)) n=2

ẼN
′
3 (n≥2)∧(n!=2)∧(¬(n%2!=0)) n=4

ẼN
′
4 (n≥2)∧(n!=2)∧(n%2!=0) n=5

1, as shown in Figure 13, in which all of the sink nodes

are SWITCH-nodes. For these nets, ẼN
′
1∼ẼN

′
4, we

can get their constraint conditions with Algorithm 2
as shown in Table 2.

Finally, applying the Z3 prover to the obtained
constraint conditions, we get the four test input data
values shown in the right column of Table 2. As a
result, “n=1, 2, 4, 5” can be used as the test input
data to check all the possible paths of the original
net shown in Figure 9.

44 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.14, NO.1 May 2020

Fig.12: Generated choiceless nets of Figure 11.

From the above results, it is obvious that we can
always find test input data for each subnet, which en-
sures all parts of each subnet executed. As mentioned
in Section 1, software testing takes much computa-
tional time due to its NP-completeness, and gener-
ating test input data is an effective way to approach
it. That is why we apply program nets to find proper
test input data. Although these input data values
are generated by the SMT solver that may take con-
siderable computational time, our algorithms are all
polynomial. This means that our method is feasi-
ble and effective to practically approach the software
testing problem.

5. CONCLUDING REMARKS

Following our previous work [7] towards solving
software testing problem by using program nets, we
have created a method to (i) generate constraint con-
ditions for the subnets that have been previously
obtained in [7], and that can structurally cover the
whole original program net, and (ii) it can find test
input data based on the constraint conditions for each
subnet by using the Z3 SMT solver. Algorithms have
been designed for (i) with polynomial computational
time. An example has been presented showing how
to find test input data, clearly demonstrating the use-

Fig.13: Simplified program nets of Figure 12.

fulness of our algorithms.

Including our previous work, we have basically pre-
sented a solution to a software testing problem related
to finding suitable test input data by adopting the Z3
SMT solvers. Although all of our designed algorithms
are polynomial, the computational time is mainly de-
pendent on SMT solvers, since the software testing
problem is generally NP-complete. Therefore, an ef-
ficient SMT solver is necessary when applying our
method.

There is still some related future work to do: (1) to
find such subnets that all definitely have input data
making all the SWITCH-nodes firable, and (2) to im-
prove the algorithms in [7] to find an optimal set of
subnets for a given program net.

ACKNOWLEDGMENTS

The authors would like to thank Professor Xiaoan
Bao and Associate Professor Na Zhang, Zhejiang Sci-
Tech University, China, for supporting this work. We
are also grateful to Mr. Hiromu Morita for his assis-
tance in coding programs when he was studying at
Yamaguchi University. Finally, we are greatful for the
assistance given by Professor Mitsuru Nakata, Yam-
aguchi University, whose his expertise greatly assisted
our work.

References

[1] B. Hetzel, The Complete Guide to Software Test-
ing, John Wiley & Sons, Inc., 1993.

Test Input Data Generation for Choiceless Program Nets 45

[2] B.T. Abreu, E. Martins, and F.L. Sousa, “Au-
tomatic test data generation for path testing us-
ing a new stochastic algorithm,” Proc. of the 19th
Brazilian Symp. on Software Engineering, vol.19,
pp.247-262, 2005.

[3] M. Alzabidi, A. Kumar, and A.D. Shaligram,
“Automatic software structural testing by us-
ing evolutionary algorithms for test data gener-
ations,” IJCSNS International Journal of Com-
puter Science and Network Security, vol.9, no.4,
2009.

[4] S. Anand, E.K. Burke, T.Y. Chen, J. Clark, M.B.
Cohen, W. Grieskamp, M.Harman, M.J. Harrold,
P. McMinn, A. Bertolino, J.J. Li, and H. Zhu,
“An orchestrated survey of methodologies for au-
tomated software test case generation,” Journal of
Systems and Software, vol.86, no.8, pp.1978-2001,
2013.

[5] Q.W. Ge, T. Watanabe, and K. Onaga, “Exe-
cution termination and computation determinacy
of data-flow program nets,” J. Franklin Institute,
vol.328, no.1, pp.123-141, 1991.

[6] Q.W. Ge, T. Watanabe, and K. Onaga, “Topo-
logical analysis of firing activities of data-flow
program nets,” IEICE Trans. Fundamentals,
vol.E73, no.7, pp.1215-1224, 1990.

[7] B. Wu, X. Bao, N. Zhang, H. Morita, M.
Nakata, and Q.W. Ge, “Subnets generation of
program nets and its application to software test-
ing,” IEICE Trans. Fundamentals, vol.E102, no.9,
pp.1303-1311, 2019.

[8] J. Mei, S.Y. Wang, “An improved genetic algo-
rithm for test cases generation oriented paths,”
Chinese journal of electronics, vol.23, no.3,
pp.494-498, 2014.

[9] Q.W Ge, T. Watanabe, and K. Onaga, “Com-
putation of minimum firing time for general self-
cleaning SWITCH-less program nets,” IEICE
Trans. Fundamentals, vol.E81, no.6, pp.1072-
1078, 1998.

[10] S. Yamaguchi, T. Takai, T. Watanabe, Q.W. Ge,
and M. Tanaka, “Complexity and a heuristic al-
gorithm of computing parallel degree for program
nets with SWITCH-nodes,” IEICE Trans. Fun-
damentals, vol.E89, no.11, pp.3207-3215, 2006.

[11] Q.W. Ge, and K. Onaga, “On verification of to-
ken self-cleanness of data-flow program nets,” IE-
ICE Trans. Fundamentals, vol.E79, no.6, pp.812-
817, 1996.

[12] Q.W. Ge, C. Li, and M. Nakata, “Performance
evaluation of a two-processor scheduling method
for acyclic SWITCH-less program nets,” IEICE
Trans. Fundamentals, vol.E88, no.6, pp.1502-
1506, 2005.

[13] H. Wang, J. Xing, Q. Yang, W. Song, and X.W.
Zhang, “Generating effective test cases based on
satisfiability modulo theory solvers for service-
oriented workflow applications,” Software Test-
ing, Verification and Reliability, vol.26, no.2,
pp.149-169, 2016.

[14] B. Dutertre and L.D. Moura, “A fast linear-
arithmetic solver for DPLL(T),” Proc. of the 16th
International Conference on Computer Aided
Verification, vol. 4144, pp.81-94, 2006.

[15] L.D Moura and N. Bjφrner, “Z3: An efficient
SMT solver,” International conference on Tools
and Algorithms for the Construction and Analysis
of Systems., Springer, Berlin, Heidelberg, pp.337-
340, 2008.

Biao Wu was born in 1989. He received
his B.S. from Hubei University of Tech-
nology in 2013, and an M.E. from Zhe-
jiang Sci-Tech University in 2016, both
in the People’s Republic of China. He is
currently a Ph.D. candidate in the Grad-
uate School of East Asian Studies, Yam-
aguchi University, Japan. His main re-
search interests include software testing
and program net theory.

Qi-Wei Ge received his B.E. from Fu-
dan University, China, in 1983, and his
M.E. and Ph.D. degrees from Hiroshima
University, Japan, in 1987 and 1991, re-
spectively. He was with Fujitsu Ten
Limited from 1991 to 1993. He was an
Associate Professor at Yamaguchi Uni-
versity, Japan, from 1993 to 2004. Since
April of 2004, he has been a Professor
at Yamaguchi University, Japan. His re-
search interest includes Petri nets, pro-

gram net theory and combinatorics. He is a member of the In-
stitute of Information Processing Society of Japan (IPSJ) and
the Institute of Electrical and Electronics Engineers (IEEE).

