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ABSTRACT

This work presents a series of neurorobotic mod-
els underlying learning in robots. It demonstrates
the way in which, during sensorimotor exploration,
robots do not just gain knowledge about how to form
movement primitives but also obtain a mental im-
agery capability. Mental imagery plays a key role in
these computational models by accelerating learning
processes of action sequencing tasks. The first exper-
iment involves permitting a humanoid robot to learn
how to retrieve an out-of-reach object using a pro-
vided tool. This experiment explores a phenomenon
on tool use development found in human infants. In
addition, it tests two hypotheses on tool use develop-
ment. The second experiment extends the domain of
robot learning by targeting a useful robotic applica-
tion. It drives a service robot to learn to acquire
knowledge of how to manipulate perceived objects
based on the objects’ information and a goal from
users. By means of planning, learning the sequence
of actions in mind, the robots are able to learn by ex-
amining actions’ outcome without really performing
actions. This allows the second model to completely
exclude parts of overt movements from the training
loop. The results confirm that two types of robots
can complete their given tasks in a reasonable period
of time. The proposed models would benefit robotic
applications in terms of online learning.

Keywords: Robot Learning, Action Sequencing,
Mental Imagery

1. INTRODUCTION

Robot learning [1-3] has a goal to go beyond tradi-
tional preprogram techniques to control robots that
lack adaptation. In this scheme, robots gather knowl-
edge and identify users’ goals by interacting with a
specific environment. This kind of learning benefits
robotic application in terms of flexibility, open-ended
learning. A reinforcement learning framework is of-
ten used to underlie this success [3]. However, the
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nature of reinforcement learning requires a long pe-
riod of exploration in order to fine-tune the underlie
control system through trial and error. Unluckily,
letting robots learn to work by themselves in the hu-
man environment cannot wait that long. This work
demonstrates a way to overcome the issue of long ex-
ploration times. It presents two experiments that uti-
lize the concept of affordances and mental imagery to
shorter the learning period.

The first experiment introduces a neurorobotic
model and learning scheme for robots and illustrates
the developmental characteristic of how to achieve a
given tool use task. The experiment focuses on repli-
cating the processes that might be involved in the
acquisition of knowledge about how to use tools in
humans. This experiment is inspired by the idea that
robots could do more useful tasks for us if they could
utilize tools as we do. Through the assistance of af-
fordances and mental imagery, the robot will gradu-
ally obtain tool use ability. Furthermore, the model
will most likely reproduce an essential quality of tool
use improvement found in human infants [4]. In in-
fants, the advancement of how to use tools can be
portrayed by the number of motor skills they have
gained. Young infants ought to have fewer motor
abilities because of the short timeframe (their age)
they had in the sensorimotor learning stage. Subse-
quently, their tool use execution should be very lim-
ited. Older infants played out the tool use task better
since they have procured an increasing number of mo-
tor abilities. The reason why having more motor abil-
ities results in better execution is that it gives more
chances that appropriate motor abilities for tackling
a tool use scenario have been learned. In this setting,
if there is no appropriate motor ability, the skills of
using tools will not be conceivable. In addition, the
experiment presents another speculation that differ-
ent timeframes (preparation period) the infants used
to familiarize with tool use situations would result in
better tool use execution. Similar to the case of mo-
tor abilities, young infants will have fewer preparation
times while older infants will have more. In terms of
advancement, expanding these values, i.e., a number
of skills, the period of preparing preliminaries, should
result in a better performance.

In the second experiment, we have set out to ex-
plore more results on utilizing mental imagery in
robots in terms of robotic application. A simulation
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of a service robot will be used as a test platform.
This robot is capable of manipulating an object with
a great range of flexibility and is suitable for applica-
tions such as object manipulation and transportation.
In this experiment, the robot will be assigned a task
of object classification on top of a table rather than
bringing an object into reach.

The two experiments utilize the concept of affor-
dances and mental imagery to help learning in robots.
Affordance [5] can be explained as an ability to inter-
pret perceived stimuli and prepare suitable actions to
respond to them. This action preparation is possi-
ble through experience during life and allows humans
and other animals to correctly react to various situa-
tions in the environment that are always changeable.
In robots, this capability could help them increase
the success rate of task completion for users. On the
other hand, mental imagery [6-7] refers roughly to the
processes that resemble perceptual experience. For
instance, mental imagery can be stimulated hearing,
seeing or visualizing, without the occurrence of the
appropriate stimuli. It might be said that mental
imagery occurrs in the mind (brain) like the phrase
“seeing in the mind’s eyes”. Humans and other ani-
mals often use mental imagery, especially images, to
underpin their plans or decisions. According to the
theory of child development [8], children can utilize
mental images when they get into the sensorimotor
stage 6 at the age of 18 months. Mental imagery may
have a vital role in the development of tool use and
other cognitive/motor skills.

Despite, literature regards tool use development in
human infants shed light on the utilization of mental
imagery, the work on cognitive robots recommended
the vital role of affordances [9-10]. However, there are
no computational models that capture these issues so
far. The first experiment is the first endeavour to re-
veal the role of both mental imagery and affordances
in tool use development. The second experiment is
focusing on utilizing mental images. In this paper,
the capacity for using the tool and classifying objects
in robots is conceivable through affordances and men-
tal imagery, while the developmental characteristic is
compelled by a number of motor skills. Essentially,
mental imagery can be utilized in an action sequenc-
ing process, replacing the need for overt motor execu-
tions. The following four sections give more explana-
tion on background concepts, settings and important
components used in the proposed models. Section 6
gives a conclusion and suggests a future work.

2. BACKGROUND

2.1 Tool use development

The ability to use tools clearly helps humans to live
their lives easier and achieve specific tasks more ef-
ficiently and conveniently. Other animals also have
been reported to use of some tools such as rocks
and wooden sticks to help cracking nuts or bringing

food [11]. However, only in humans is found a great
range of tool utilization. Inventions have been found,
thanks to the humans’ brain. And in-line with other
cognitive skills, tool use’s performance seems to vary
with the humans’ age. Younger age limits the knowl-
edge of how to utilize tools, and sometimes is not
possible at all. For example, in some easy situations
using tools, such as taking a faraway object to reach
with a provided rake-like tool, can pose difficulty to
all humans aged younger than 18 months. It has been
reported that at that age, the performance of using
tools remains invariant and contingent. Rat-Fischer
and colleagues [4, 12] conducted a series of interest-
ing experiments that clearly show the relationship be-
tween tool use performance and the infants’ ages. Fig.
1 illustrates the mean percentage of success for each
initial condition (c1-c5). The spatial gaps correspond
to the infants’ ages. Tool use understanding seems to
be connected to the experience that each infant had
obtained during life, for example dufing play. In their
tool use tasks, difficulty occurs when the spatial gap
between the tooltip and the target object, a toy, is in-
creased. This spatial gap causes some infants to fail in
the test. It might be because tool use understanding
requires knowledge about object-object interaction or
the ability to utilize mental images. In their addi-
tional experiment, the infants that previously failed
in the test can spontaneously succeed when giving
them a demonstration of how to use the tool. How-
ever, only the infants aged 18 months and older that
can learn from the demonstration. Thus, observing
demonstrations (i.e., [4]) of how to use a tool might
substitute the missing information about the action-
outcomes effects of manipulating objects using tools
to the infants.

Fig.1: The Development of Tool Use in Infants [4].

On the other hand, tool use development in human
infants can be viewed as highly related to their exist-
ing motor skills [13-15]. Due to their age, younger
infants will have a smaller number of motor skills
which directly limits their tool use performance. This
is because suitable skills needed to complete the tasks
have not been acquired by these infants. In contrast,
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obtaining more motor skills gives older infants more
chances to succeed in the test. Some researchers ar-
gue that, in the beginning, infants can display only
basic tool use ability using straightforward sensorimo-
tor information alone [13], while in the later stage,
the tool use utilization required the exact informa-
tion about object-object interactions and the capacity
to control an internal representation of that knowl-
edge [16]. Affordances assume a focal role combining
knowledge from perception and action [13]. At birth,
human infants are not invested with a capacity to see
affordance of artefacts. To comprehend their general
surroundings, through affordances, they need to in-
vestigate this ability [17].

2.2 Cortical brain involved in the mental im-
agery

The Mental Rotation problem [18] is an excellent
example case of mental imagery utilization. It in-
volves comparing pictures or drawings of two objects
that are arranged in different degrees and answering
the question of whether the two objects are the same
or the mirror version of each other. This problem
has been studied and researchers have reported that
the time spent in response and the error rates vary
with the angular disparity between the two objects.
An interesting question from this study asks why the
answer to the imagery-based question seems to take
time to respond as close to rotating objects in the
real world. Considering that rotating mental images
is not constrained by the laws of physics.

Fig.2: The Cortical Brain involved in Mental Pro-
cesses [19].

In order to study the mechanisms of the brain re-
lated to solving this problem and how they work,
most of the methods are scanning the human brain
while someone is solving the Mental Rotation prob-
lem. It has been found that in addition to the Pre-
frontal Cortex, which is the part used to create men-
tal images, the brain part that controls movements
(Motor Areas), in the upper and back part of the
brain, the Parietro-Occipital Cortex, also has signif-
icant activations (see Fig. 2) [ 19]. This suggest a
relationship between motor activities and mental im-
agery. It has been believed that the two areas are
connected because they are both used in sensorimo-
tor learning. In humans, mental imagery is possible
because they have rich experience of performing ac-

tions and observe the outcomes.

3. METHODOLOGY

3.1 Cognitive processing

A neurorobotic model presented in this study was
constructed based on findings regarding the involve-
ment of specific brain areas during the period of cog-
nitive processing [19, 24]. The model also includes
the intrinsic motivation mechanism that is believed to
play a key role in shaping what agents can learn, and
when they should start learning. The main compo-
nents of the model are prefrontal cortex (PFC), pari-
etal cortex (PC), primary visual cortex (V1), premo-
tor cortex (PMC), primary motor cortex (M1), and
the motivation activation mechanism including hip-
pocampus (HIP) units.

The V1 is constructed as a two-dimensional neu-
ral map sized 320 × 240. This neural map is used to
store camera images or visual information captured
from the robot’s eye. PC is also a neural map with
the same size as V1. It encodes the spatial informa-
tion extracted from the image in V1 using basic color
filtering processes.

The process corresponding to skill acquisition of
the model was underly by the motivation activation
mechanism. This part was inspired by the idea of
intrinsic and extrinsic motivation in psychology. In-
trinsic motivation serves as an internal reward such as
joy or surprise that the human infants receive when
they have discovered some interesting events during
play. Extrinsic motivation refers to the reward re-
ceived from outside, for example food. In this work,
we use the change of the environment, that is the
current view of the users’ task, as a source of attrac-
tion. The motivation activation works as a critic or
dopamine neurons in the brain.

3.2 Learning mechanism

Information propagates through connections be-
tween neural maps. This study includes four con-
nections and three types of learning algorithms: C1,
C2, C3 and C4 (see Fig. 5, section 4). C1 and C2
are Hebbian connections that encode affordance. C3
uses supervised Kohonen training. This connection
can spread the data between PFC 1 and PMC in both
directions. Through this connection, a mental image
can be created. C4 is a Q-learning connection. It ac-
cumulates knowledge of the action sequencing skills
displayed during training.

Affordances represent the link between situations
of tool use and their appropriate actions. The per-
ceived situation activates an appropriate action that
leads the robots to achieve a specific goal. It is formed
during the acquisition of skills. To different robots,
the same task, such as a tool use situation, can lead
to the acquisition of different goals. The Hebbian
learning rule is defined as equation 1:
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∆wij = η ai(aj − wij) (1)

Equation 1 calculates the weight change ∆wij us-
ing the activity level of post-synaptic neuron aj sub-
tracts by the current connection weight wij and mul-
tiplying the learning rate η = 0.15 and the activation
of the pre-synaptic neuron ai.

Mental imagery means the ability to forecast the
outcome of the intended action. It will be used to
support a robot’s planning. Ideally, using mental im-
ages (in PFC 1) alone will be enough to support the
acquisition of skills. The supervised Kohonen learn-
ing rule is given in equation 2.

∆wi win = η awin(ai − wi win) (2)

Equation 2 updates only the connection weights
between one winning neuron in PMC to all neurons
in PFC1(wi win). It uses the learning rate η = 2.0
multiply by the activation of the winning unit awin,
then multiplied by the difference between activation
of neurons in PFC1 ai and the current connection
weights wi win.

Q-Learning is an innovative machine learning
method mainly used in the study of action sequenc-
ing [25]. The Q-learning process accumulates knowl-
edge for any given task based on action, state, and
reward. The reward is used as a guide to select the
next action and also affects the next state. The Q-
Learning system can achieve an optimal solution via
the rewarding and updating process (reward maxi-
mization). The Q-learning processes used here were
adapted to train the connection C4 of the model as
shown in equation 3.

∆wi win = η((rewaedt−γ qMaxt)−Qwint−1)xi t−1

(3)
rewardt refers to a value of 0 or 1 that will be as-

signed at the time step t. It will be subtracted by the
product of the discount factor γ=0.8 and the max-
imum value of the q table qMaxt. After that, the
maximum value of the q table in the previous time
step Qwint−1 is subtracted. Finally, the multiplica-
tion with the learning rate η = 0.0001, and activation
of the input units of the previous time step xi t−1 will
be performed.

3.3 Interesting events

The term intrinsically motivated events (IMEs)
[20] refers to the events that distract the infants’ at-
tention. In this work, we define manually that what
the robot can detect will indirectly refer to what skill
the robot can discover. This work assumes that the
IMEs are a source of motivation that drive the infants
to practice the underlying action that causes them to
develop skills. The individual difference is set accord-
ing to the number of IMEs the robot can detect. Any

interesting event will be revealed by chance, thus dif-
ferent robots can discover different events and acquire
different skills. Furthermore, some skills may useful
for solving a given task while the others may not be.
Consequently, it is possible that different infants from
the same age group can or cannot solve the same task.

Actions can be distinguished as intrinsically or ex-
trinsically motivated by considering the intention be-
hind them. For example, pulling action is an extrinsi-
cally motivated action if the intention of doing pulling
is to bring food back for consuming such as when the
infants are hungry. In contrast, if the intention is to
bring other objects such as toys back for play, this
might be the case of intrinsically motivated action.
Therefore, pulling and interaction actions of this work
will be determined as intrinsically motivated actions.
These actions do not cause any external reward to
the infants. Instead, they cause something interest-
ing that distract the infants’ attention such as the
toy moving when touched with the tool. We assume
that these kinds of events make the infants keep doing
those actions in order to constantly make interesting
events happen.

In order to demonstrate that robots can acquire
the knowledge of how to make useful actions in a rea-
sonable amount of time, we have established a scheme
where the change of the scene caused by movements
of the robots is appropriate for a simple scenario for
the use of the tool and object classification tasks. For
example, six types of situations are assumed to occur
during exploration from this interaction (movement
of the robot’s arm with the tool, see section 3 for the
details). In infants, when these events happen, they
may be surprised or distracted because the object of
desire (a toy) was moved. Interesting events include
pulling, touching and moving the toy in four direc-
tions: North, South, East, and West.

3.4 Dynamic Movement Primitive

DMP’s framework [21] was used to create a set of
motor skills for robots. Encoding of motor skill or
movement trajectories is carried out by a number of
linear and non-linear dynamic functions. DMP can
generate a series of joint angles that when rolled out,
can be directly used to control robotic control actua-
tors. Equations 4, 5, and 6 are key equations of this
framework.

y
′′

t = αy(βy(g − yt) − y
′

t) + ft (4)

ψi = exp(−hi(x− ci)
2) (5)

x
′

= −αxx (6)

The first part of equation 4 is a linear dynamic
system that is shaped by the forcing term f . The
trajectory yt will be used to control one specific joint
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of the robot. The forcing term f is calculated by nor-
malizing the weight values (Eq. 5) with the canonical
value x which was reduced by the factor α over time,
as specified in Eq. 6. The weight value ψi has been
defined as a Gaussian function with variance h, center
c, and activation x.

Unlike a traditional use of the DMP, there are no
observed movements provided in this work. The sys-
tem must find the right move through the processes of
trial and error. This was inspired by the way infants
acquired their motor skills. This work applied the
Policy Improvement Black Box optimization (PIBB)
[22] algorithm to learn the movement action primi-
tives. Using PIBB does not require any target tra-
jectory for comparison. Instead, it determines the
rewards produced by several samples. Initially, the
PIBB creates some sample movements by adding ran-
dom noises to the current parameter sets (shapes,
goals) of a DMP. A reward assigned to each sample
can be calculated arbitrarily depending on each tasks’
specification. Ideally, each sample will get a different
reward. The new parameter sets of the actual control
will be calculated by averaging the parameters sets of
all sample, weighted by their rewards.

The PIBB algorithm consists of 4 main steps:
adding noise, awarding, weighting, and averaging.
These will be repeated until an outcome is satisfied
or reach a maximum step is reached. Initially, the
goal parameters of the DMP (joints’ angle) will be
assigned using the value of a given smart move, while
the shape parameters will be calculated using weight
averaging technique borrowed from the basic DMP.
These initial values will be called the mean param-
eter set. After that, all of these parameters will be
adding up with noise terms which, when the DMP
roll out, will cause different movements.

The main idea behind the PIBB algorithm is that
it finds a new set of a policy’s parameters by averag-
ing all created samples based on their rewards. By
means of weight averaging, the new mean parameters
will lead a system in the right direction, approach-
ing a goal. This process will be repeated until the
maximum cycle count is reached or an action based
on the new mean parameters gains enough reward
(cause an interesting event). The PIBB algorithm is
well suited to learn shape parameters in the DMP’s
framework. The DMP’s framework was applied to
create actions, and the PIBB was used to refine them.
Fig. 3. Illustrates the difference between basic DMP
and DMP+PIBB. The left part of Fig. 3. illustrates
that basic DMP learn to imitate an observed trajec-
tory by minimising its cost. In contrast, on the right
part, a goal direct DMP learns to acquire new motor
skill by exploration.

Fig.3: The difference between basic and a reinforce-
ment learning DMP.

4. EXPERIMENT-1: TOOL USE DEVEL-
OPMENT

4.1 Robotic tool use scenario

The iCub simulator [23] was used to simulate in-
fant participants. In front of the robot is a table, a
big rigid box (see Fig. 4a). Scenarios for the use of
tools are set at the top of this table. At a location
too far from the robot’s reach, a toy, the red cylinder,
will be placed on the table. The iCub was set to use
its’ right hand to hold a rake-like tool permanently.
The tool is in green color with a long stick handle and
a flat rectangle tip. The tool has been used to extend
the robot’s reach length. The competence to use the
tool requires only the robot’s right arm. Movements
caused by the right arm directly affect the position of
the tool.

Fig.4: Robotic Tool Use Scenario.

4.2 Initial postures and tool use situations

In fact, it can be a daunting task to demonstrate
the processes of acquiring all possible actions or even
focusing on one arm moving with a tool. Therefore,
for our initial tool use scenarios, only two types of
actions that the robot displays with the tool are con-
sidered mandatory. They are actions of “pulling” and
“interaction.” What differentiates each action is its
result. Pulling, for example, is an action that moves
the toy to an accessible area, while the interaction ac-
tions refer to the effects when the tool interacts with
the toy, for example touching it, or moving it to the
left.

The term initial posture refers to the configuration
of the robot’s arm. Changing the value of the joints
directly causes the posture of the robot to change.
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There are four initial postures that vary the spatial
gap between the tip of the tool and the toy. The
first posture places the tip of the tool behind the toy.
The second has a small spatial gap, while the third
and fourth have greater gaps. In order to simplify
the exploration of action-perception and the acqui-
sition of tool use skills, we assumed that the robots
hold the rake tool permanently in their right hand
and will only encounter four different situations dur-
ing the action-perception exploration period. From
the point of view of the robot, its visual perception
is directly affected by movements of its arm. This
causes changes in the spatial difference between the
tip of the tool and the toy.

4.3 Architecture of the model

The computational model of the first experiment
(Fig. 5) includes several parts of the cortical area
as stated in the methodology section. In this experi-
ment, the robot was set to stand still in front of the
table. In most cases, it is able to see both the tool
and the toy. Tool use situation will be taken as an im-
age from its right eye and will be sent to the model.
By using a basic color filtering process, only parts
of the tool and the toy will be retained and used as
neural activation of the map V1. Thus, changing the
perceived scene will cause a change in the neural ac-
tivation. Different tool use scenarios are variations
caused by movements of the robot’s right arm and
the interaction between the tool and the toy. Some
movements could cause the toy to move in a certain
direction when touching the tool, which are consid-
ered interesting situations.

There are 10 neurons in the PMC map. They
are used as affordance interpretation. Activations of
these neurons refer to the preparation of action. Each
neuron in this map has a direct link to a specific unit
in M1. What is used to construct units in M1 is not
a neural mechanism but a form of motor execution.
Thus, activation of the PMC’s neurons causes execu-
tion of the corresponding M1’s unit. There are two
neural maps in the part of PFC: PFC 1 and PFC 2.
The PFC 1 is used to encode mental images created
by the connection C3. PFC 2 is used to store the
goal. There are 6 neurons in the HIP. Each neuron is
used to monitor the specific interesting situation that
will be interpreted by the connection C1.

4.4 Action acquisition

The DMPs were used to control movements of the
right are of the iCub simulator. The DMPs have been
designed to have 7 goal parameters that match the
number of joints, and 28 shape parameters (4 for ev-
ery joint) to modify the trajectory of the movement.
The two sets of parameters can be automatically con-
trolled for each joint of the arm.

In order to obtain proper parameters for the
DMPs, a form of normalization is applied. We have

Fig.5: The Neurorobotic Model for Learning to use
Tool.

specified that the model starts with random shape
and goal parameters. Thus, the robot begins the
sensorimotor learning by performing random move-
ments. As soon as it has discovered new events (no
activation on the HIP’s neurons), the goal parame-
ters of the current DMP will be used for the other
10 DMPs. Therefor the normalization is done over
10 sets of shapes parameters from 10 DMPs (sam-
ples). Therefore, a set of normalized goal and shape
parameters will correspond to one specific skill or a
movement that causes an interesting event.

The number of interesting events is restricted.
Each simulated infant will be able to discover 6 in-
teresting events. However, in fact, there are some
cases where the model uses more than one neuron
to achieve the same goal. The individual difference
means each robot has acquired different DMP param-
eters and attached them to different PMC neurons.

4.5 Action sequencing

In the Q-Learning process, the action is deter-
mined by a winning neuron in the PMC which is di-
rectly connected to a specific DMP. States refer to
the activation of the PC. The reward of 1 will be re-
ceived when the robot can bring the toy to the target
position.

Fig. 6 shows the strength of connection weights
(C4) between 4 different initial tool use situations
and the PMC’s neurons. As stated before, the two
examples (Fig. 6a and 6b) correspond to the two in-
dividuals. Four images displayed in PC are used for
illustration purposes. In fact, the PC encodes only
the part of the tool and the toy.

The difference between the two examples is deter-
mined by the variety of PC-PMC connections. Fur-
thermore, PMC activation should differ as an affor-
dance interpretation, but this is not displayed in the
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Fig.6: Examples of Individuals Difference as Con-
nection weight strengthen.

figure. The thicker lines refer to the Q-learning con-
nections, which are strengthened corresponding to
the initial position encoded in the PC. Lines with
different colors are used to illustrate different initial
postures.

In example 1 (Fig. 6a), the PMC neuron number
2 is activated with high activation when the robot
encounters the initial tool use situation number 1.
This means that, because of the SoftMax function,
the robot is more likely to choose Action P. Likewise,
the PMC neuron number 7 is activated with the high-
est activation when the robot sees tool use situation
number 4. The system is expected to exhibit action
S. Given that the outcome of action-S is similar to the
situation of the tool use number 1, the system should
then activate action-P and this is inturn should lead
to the success of the toy being retrieved.

In contrast, if the system is formed as in example
2 (Fig. 6b), it cannot succeed in the case of a tool
far from a toy (tool use situation number 4). The
reason for this is that the PMC neuron number 5 in
the initial tool use situation number 4 is active, but it
was mapped to the action-T that is usually not like
the situation number 1 of tool use. This system is
therefore supposed to fail in the test.

4.6 Experiment settings

As revealed by [4], the performance of the use of
tools is limited by the age of the child. Increasing
age leads to the better performance in the test. We
have interpreted the age as number of motor skills
and training trials and conduct two tests based on
two hypotheses:

• Hypothesis 1: In this test, the age was attached
to the different number of motor skills. This mod-
els the fact that younger infants should have a small
number of things they can do, while older infants can
do many more things because they have acquired a
higher number of motor skills. The approach is to
restrict the case of interesting events that each sim-
ulated infant can detect. The youngest infants can

detect the fewest cases of interesting events and the
number of events detected gradually increased as they
grew up. Thus, infants aged 14 to 22 months (i.e. 14,
16, 18, 20 and 22) were created by varying the num-
ber of the interesting events they can detect from 2 to
6. Note that, all robots in the simulation were initial-
ized with two fundamental motor skills: pulling and
touching, and they all use the same training cycle
count of 10.

• Hypothesis 2: In this test, the number of train-
ing trials is used as the infants’ age. All simulated
infants will be equipped with all 6 motor skills, but
the number of training trials used in the Q-Learning
processes will vary. Younger infants are simulated us-
ing a small amount of training, while the older ones
will be simulated using a higher amount of training.
In detail, the simulated infants aged 14 months refers
to the training cycle count of 2, while robots aged 16,
18, 20 and 22 months are described by the training
cycle counts of 4, 6, 8 and 10.

In each test, the simulated infants were required
to solve a given tool use task in one of two situations:
“tool behind toy” or “tool far from toy”. In addition,
one of the two solving strategies must be utilized by
each robot: “Reactive” or “Planning”. The “Reac-
tive” strategy refers to the case when the robot ex-
hibits overt movements during learning, while “Plan-
ning” is the case when the robot uses mental images
instead. By means of a statistical test, each experi-
ment will be repeated 30 times. Thus, we needed 60
individuals.

4.7 Results

The first experimental results are illustrated in Fig.
7. The top line (blue) of the two diagrams (Fig. 7a
and 7b) shows the performance of the use of the tool
in the situation “tool behind toy”. The performance
of all age groups’ tools is similar in this case, with
a high success rate of around 90%. The youngest
group seems to be able to recover the playground at
the highest success rate, 100%. This is because they
have only two skills in their actions, i.e., pulling and
touching, and the situation of the “tool behind toy”
is more likely to lead to high activation on the skill-
P due to the affordability interpretation. Thus, the
first group gains benefit and this leaves no room for
improvement. Increasing skills will therefore not lead
to performance improvement.

The lower line (red) of the two graphs in Fig. 7, in
contrast, shows a progression in tool use performance
when more skills are available. Unlike the case of
“tool behind toy”, skill-P cannot be used to retrieve
the toy from the situation where it was set to have
large spatial gap (“tool far from toy”). Therefore, the
performance of this begins in the smallest group from
approximately 0% and increases to 10, 40, 45 and 60
corresponding to the increase in the infant’s age.

Fig. 8 illustrates the second experiment’s results.
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(a)

(b)

Fig.7: The Result of Simulating the Infant’s Age as
the Number of acquired skills.

The youngest group without training can resolve the
tool-behind-toy case at approximately 60% of the
time in this test. Unlike the first experiment, roughly
20% of the individuals in the group can solve the case
of “tool far from toy”. While the increase in the num-
ber of training trials leads to an increase in the per-
formance of the two tests, the performance feature is
not linear. It seems that the use of the amount of
training cycle counts of 6 results in the highest per-
formance in the case of “tool behind toy”.

The results obtained by the two different strate-
gies, “reactive” and “planning”, appear identical in
both tests. This confirms that the use of open move-
ments can be effectively replaced by mental imagery.
However, the first hypothesis seems to capture the
main feature of the development of tool use better
than the second when compared to the children’s data
reported in [4].

5. EXPERIMENT-2: OBJECT CLASSIFI-
CATION

5.1 Robotic Application

In this new experiment, a study on robotic manip-
ulation is introduced. It focuses on object classifica-
tion based on color. A simulation of Fetch robot pro-
vided by Fetch Robotics (https://fetchrobotics.
com) was used as a test platform. This robotic
simulation supports the Robot Operating System
(ROS) framework (https://www.ros.org), possible
to integrate it into a Gazebo simulation (http:
//gazebosim.org). Finally, it is more suitable
for robotic application such as object manipulation,
transportation than the iCub. A Fetch robot is a
mobile robot that has a mobile base, an articulated

(a)

(b)

Fig.8: The Result of Simulating the Infant’s Age as
the Number of Training Trials.

arm with a gripper, a torso, and a pan-tilt head with
a depth camera. Both physical and simulated robots
have been widely used as test beds in robotic research
in both the educational and industrial domains. Fig.
9a illustrates the simulation of the Fetch robot. Fig.
9b is the image of a red object on the table from the
robot point of view. Fig. 9c illustrates that when per-
forming action, the object will be occluded by part of
the robot arm.

(a) (b)

(c)

Fig.9: Simulation: a) The Fetch robot b) an Initial
Task c) The Robot’s Arm in Action.

The robot will be facing situations where there is
an object placed on top of table. Its goal is to move
the object, with its gripper, from various initial po-
sitions to some specific target locations on the table
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defined by users. In short, the robot has to discover
the users’ goal and perform a sequence of actions in
order to reach the goal. For example, when seeing a
“red” object, the goal of moving it to the left may
be assigned by users (Fig. 10a). On the other hand,
if the “blue” object is placed on the table, the goal
might be moving it to the right (Fig. 10b). In or-
der to complete this task, the robot must discover
effect on action. This task clearly requires a set of ac-
tions to accumulate knowledge of action sequencing.
By means of reinforcement learning, goals are targets
that an agent tries to accomplish. In this test, the
goal is to find and move an object to a specific target
location.

(a)

(b)

Fig.10: Samples of User Defined Goals: a) red ob-
ject on the left b) blue object on the right.

5.2 Architecture of The Model

Architecture of the model of the second experi-
ment is illustrated in Fig. 11. It is a modified version
of the one detailed in the first experiment. However,
motivation activation and HIP are excluded since we
have done the action acquisition processes offline to
speed up the experiment. The connection C1 is also
an affordance connection as in the first experiment.
However, the connection C2 is a Kohonen connec-
tion that is trained to create mental images. The
last connection, C3, is a Q-learning connection. Each
connection has been trained using the processes as
described in section 3.3.

The new model is also equipped with the parts of
beliefs and object information which play an impor-
tant role in the training of the connection C1 and
C3. These additional signals will help the model to
differentiate the case when no part of the robot’s arm
occluded the object. The map PMC has 8 neurons
corresponding to 8 actions. The belief unit also has
8 neurons that encode a state of the robot. Color
detection is used to identify color of the object of a
given task and will be stored in the object informa-
tion units. One constraint for this experiment is that
there will be only one object with one color on the

Fig.11: The Neurorobotic Model for Object Classi-
fication.

table.

5.3 Actions’ Definition

This experiment defines actions as movements of
the arm to accomplish some purpose. The arm of the
Fetch robot has 7 joints with a great range of move-
ment allowing it to do complex movements. It is im-
portant to note that, unlike the iCub, joints of the
Fetch are not constrained by the human arms, thus
it can reach a goal by exhibiting weird movements.
In this experiment, MoveIt Planning Framework [26]
is used as a controller to control the robot arm in-
stead of the DMP framework. Its benefit is providing
a set of great tools such as inverse kinematic control
and obstacle avoidance capabilities. Thus, action ac-
quisition processes are constructed more easily, more
quickly, and are more flexible without the need for
sample movements, compared to using DMPs as in
the previous experiment.

In order to tackle the task of manipulating objects
and learning to classify them by colors, 8 basic actions
are defined. Each action is a movement of the arm
that brings the robot’s gripper to a specific location
in space with respect to the object. This can be done
by finding the location of the object, [x, y, z], and
giving it as an input to the MoveIt controller. See
table 1 for the details. Action ML and MR do not
update the x and z values since the two variables can
be taken from the previous action. However, they are
the only actions that can lead the model to achieve
the users’ goals. In detail, x, y, z are the location of
the object on the table relative to the position of the
robot.

From the first experiment, we have realized that,
in order to utilize the mental image in planning,
the robots must have a complete set of actions or
all mandatory actions. Planning based on a limited
number of mandatory actions will not lead to a good
performance because there is no chance that correct
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combinations of how to achieve a given task can be
found. Thus, for the sake of pursuing robotic applica-
tions, the robots will able to perform all basic actions
stated in table 1.

Table 1: Basic Actions.
No. Name Description Config.
1 PC Prepare the gripper on the x-0.3

Center poses with respect to z+0.1
the object location

2 PL Prepare the gripper on the x-0.3
Left of the object y+0.1

z+0.1
3 PR Prepare the gripper on the x-0.3

Right of the object y-0.1
z+0.1

4 AC Approach the object from x-0.15
the Center z+0.1

5 AL Approach the object from x-0.15
the Left y+0.1

z+0.1
6 AR Approach the object from x-0.15

the Right y-0.1
z+0.1

7 ML Move object to the Left y=0.3
8 MR Move object to the Right y=-0.3

The states or beliefs of the robot (Table 2) are
constructed based on its last action. For instance, if
the robot performs action “AC” its state will be “AC”
which means that it believes it is in the state “AC”.
This experiment uses 8 states as shown in Table 2.
This information will help the robot to distinguish
each perceived scene and drive the model to select
correct action. Ideally, each state will be used as an
additional signal to train the connection C1.

Table 2: States/Beliefs of the Robot.
No. Name Description
1 Init The robot is in the Initial state with the

arm in the stow pose (see Fig. 9a)
2 PC The robot is in the state of Preparing the

arm at the Cente of the object
3 PL The robot is in the state of Preparing the

arm at the Left of the object
4 PR The robot is in the state of Preparing the

arm at the Right of the object
5 AC The robot is in the state of Approaching

the object from Center
6 AL The robot is in the state of Approaching

the object from Left
7 AR The robot is in the state of Approaching

the object from Right
8 N/A This state is assigned when the robot

performs action ML or MR. This state
will not affect the connection c1

5.4 Experiment Settings

In the first experiment with the iCub’s tool use
development, the constraints that affect the perfor-
mance were the number of motor skills and training
cycles used in the Q-learning processes. However, as
seen in the first experiment, varying the number of

training trials did not have much affect on the per-
formance, so the training cycles in this test is set to
10. In addition, since this experiment concerns test-
ing the possibility of using mental imagery in robot
learning, training the model using overt movements
will be excluded. It tests the model with different
initial positions and colors of the object that will be
considered as an initial task for the robots.

Individual difference is created by different con-
nection weights of the model that directly control
movements of the robot. We create new simulated
robots for the test by assigning new sets of connec-
tion weights to them. By re-training the connection
weights (C1, C2, C3), two robots will react to the
same task differently. In term of affordance inter-
pretation, we assume that different robots will have
different experiences with objects during the explo-
ration phase. Thus, the level of the PMC’s activation
of each robot in response to the same perceived object
will probably not be the same.

5.5 Results

By testing the model with 100 simulated robots as
described above, we found that only the robot with
good affordance interpretation (about 10%) will re-
sult in a good performance completing the task. Im-
proper interpretation (about 90%) will not allow the
robot to achieve all of the users’ goals. However, since
the connection C1 is trained on a scheme of sensori-
motor learning, the result is unpredictable. In or-
der to make the model respond properly, we must re-
peat the re-training process until the proper response
is found. Please note that each robot was trained
only on the cases that the “red” or “blue” object was
placed on the “center” of the table. In testing, the ob-
jects were placed randomly. Fig. 12 shows samples
of PMC’s activation of different robots in response
to the same initial task. The bar chart of Fig. 12a
illustrates the case of a proper PMC’s activation. Dif-
ferent activation of neuron PC, PL, PR will benefit
the starting of the Q-learning processes. On the other
hand, similar levels of activation of the three neurons
as shown in Fig. 12b made the model unable to learn
the object classification task correctly.

When the PMCs activation had the pattern as of
Fig. 12a, it was possible of the robot to complete
100% of the 10 tests. In contrast, the pattern in Fig.
12b made it possible to only complete half of the test,
or for only on one color, thus the maximum success
rate is 50

6. CONCLUSION

The first experiment demonstrated and confirmed
that the development of how to use tool can be
progress with age. The first test (Hypothesis 1) in-
terprets infants’ age as the number of acquired motor
skills, whereas the latter (Hypothesis 2) differentiates
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(a)

(b)

Fig.12: Samples PMCs Activations a) A Proper Ac-
tivations b) An Improper Activation.

the age as a period of tool use experience before test-
ing. Even though the results showed a similar charac-
teristic for tool use performance (Fig. 7, 8), we sug-
gest that the development of tool use found in human
infants might be caused by differences in the number
of motor skills they have obtained. However, there is
still no evidence to support the connection between
the number of motor skills or the experience period to
the age. The performance of the use of instruments
in human infants remains unknown.

Scenarios of tool use captured from the eye of the
robot are changed subject to movements of the right
arm of the robot that holds the tool. However, the
number of different tool use situations does not sim-
ply mean the number of robot actions (2 to 6). Due
to the unpredictable effect of the physical interac-
tions between the tool and the toy, the Q-Learning
processes forms knowledge of how to use tool from a
variation of inputs rather than a static set.

This work also shows that mental imagery (an an-
ticipation of the results from intended actions) can be
used to replace overt movements for the achievement
of tool use capability. Since the robots can plan to
solve the task using mental images, this may be in-
terpreted as an understanding of how to use a tool.
In such cases, the robots can spontaneously use mo-
tions to solve a perceived tool use scenario like what
happened in real human infants.

The second experiment confirms another possibil-
ity of using mental images in learning action sequenc-
ing. The concept behind this success is that the
model can utilize mental images alone in training of
the Q-learning connection. It is fast because there is
no need to do overt movements to explore the given
goals. In terms of robotic applications, this capabil-
ity would help robots to learn the user tasks on the
fly.

The two models use static images and compare
their difference in order to identify the reward. In fu-
ture work we will use camera images directly for the
activation of the PC by utilizing a convolutional neu-
ral network (CNN) framework. This addition would
allow the future model to deal with variance of ob-
ject location and extend the work to other types of
robotic applications.
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