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ABSTRACT

The growth of high-performance mobile devices
has resulted in more research into on-device image
recognition. The research problems have been the la-
tency and accuracy of automatic recognition, which
remain as obstacles to its real-world usage. Although
the recently developed deep neural networks can
achieve accuracy comparable to that of a human user,
some of them are still too slow. This paper describes
the development of the architecture of a new convo-
lutional neural network model, NU-LiteNet. For this,
SqueezeNet was developed to reduce the model size to
a degree suitable for smartphones. The model size of
NU-LiteNet was therefore 2.6 times smaller than that
of SqueezeNet. The model outperformed other Con-
volutional Neural Network (CNN) models for mobile
devices (eg. SqueezeNet and MobileNet) with an ac-
curacy of 81.15% and 69.58% on Singapore and Paris
landmark datasets respectively. The shortest execu-
tion time of 0.7 seconds per image was recorded with
NU-LiteNet on mobile phones.

Keywords: Deep Learning, Landmark Recognition,
Convolutional Neural Networks, NU-LiteNet

1. INTRODUCTION

Landmark recognition is an important feature for
tourists who visit important places. A tourist can use
a smartphone that has a landmark-recognition appli-
cation installed for retrieval of information about a
place, such as the names of landmarks, the history,
events that are currently taking place and opening
times of shows. This process involves taking a pic-
ture of a landmark and letting the application soft-
ware retrieve the relevant information. This effective
mobile interface has created new trends for the tourist
industry, mobile shopping, and other e-commerce ap-
plications.

In the past, landmark recognition [1–7] utilized the
capability of computers. These computing devices
can cope with the large size of databases and compu-
tational complexity with sufficient resources to oper-
ate the application. However, major problems have

Manuscript received on January 5, 2019 ; revised on May 21,
2019.
Final manuscript received on June 30, 2019.
1,2 The authors are with Department of Electrical

and Computer Engineering, Faculty of Engineering, Nare-
suan University, Phitsanulok 65000 Thailand., E-mail:
chakkritt60@email.nu.ac.th and paisarnmu@nu.ac.th

occurred due to inaccuracy of recognition and long
processing times when these applications have been
running on mobile devices. These may have been
caused by the utilization of recognition methods, such
as the scale invariant feature transform (SIFT), scal-
able vocabulary tree (SVT) and geometric verifica-
tion (GV). Some of these methods have been studied
extensively in the past because of their exceptional
performance. However, their high degree of accuracy
results in long processing times.

The application of machine learning models for
landmark recognition has encountered various prob-
lems in practice. Landmark recognition needs a large
amount of training with a dataset to obtain an ef-
fective machine learning model. This model is then
utilized by the recognition program. The size of the
model obtained is usually large, and thus requires
a long processing time. The image processing and
recognition are therefore usually done on a server
computer. The picture is taken by the smartphone
user and is sent to the server for recognition, after
which the result is sent to the smartphone. Moreover,
the smartphone has to be connected to the internet
to perform the recognition function, so it cannot be
performed in off-line mode. To solve this problem,
the application needs to embed the machine learn-
ing model into the smartphone and perform on-device
recognition. However, a large model cannot fit into
the smartphone because of the phone’s limited mem-
ory space, and so its size has to be reduced. One
method for doing so is the application of a convolu-
tional neural network (CNN). This has been recently
studied with a view to extending the CPU and GPU
modules to achieve high-performance image recogni-
tion.

CNN has received much attention for image recog-
nition, object detection and image description. For
the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC), new models have been developed
which are more effective than the previous mod-
els. Such models are AlexNet [8], GoogLeNet [9],
VGG [10], and ResNet [11], which were the winners
of ILSVRC in 2012–2015. These competitions have
stimulated progress in the development of research on
image recognition, and the CNN models are the most
effective examples of machine learning at present.

As described in [12], AlexNet [8], the winner of
ILSVRC 2012, was applied to a large-scale social im-
age collection (500 classes of 2 million images) and
compared with the Bag-of-Word (BoW) method us-
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ing a SIFT descriptor. It was shown that CNN could
attain 23.88% recognition accuracy, while the BoW
method only reached 9.5%. This result indicated that
CNN was more effective for image recognition than
the BoW methods. As discussed in [13], the param-
eters in AlexNet were reduced by about 50 times to
create SqueezeNet, which resulted in a “lite” version
of CNN. The structure of SqueezeNet contains two
parts: (1) A Squeeze block, which implements the
convolution layer with a 1 × 1 filter, and (2) an Ex-
pand block, which implements the convolution layer
with 1×1 and 3×3 filters. The Squeeze block reduces
the data dimension, while the Expand block is effec-
tive in analyzing data. The reduced-size version of
CNN can still maintain the same level of recognition
accuracy as AlexNet.

GoogLeNet was developed by Google and was the
winner of ILSVRC in 2014. A defining feature of
GoogLeNet is its inception module, which has the
ability to analyze data accurately. The network con-
sists of a convolution layer with 1×1, 3×3, and 5×5
filters. It uses a convolution layer with a 1×1 filter to
reduce the data dimensions. GoogLeNet can reduce
a model size by up to 4.8 times more than AlexNet.
The architecture of GoogLeNet includes nine incep-
tion modules arranged in a cascading manner, which
increases performance in terms of recognition accu-
racy. However, this structure also increases the time
required to train the network to about three times
that of AlexNet.

For this paper, we adopted an idea for the devel-
opment of SqueezeNet, which consisted of a Squeeze
block and Expand block. The improvement consisted
of the inclusion of a convolution layer with 5× 5 and
7× 7 filters to enable the Expand block to cope with
the analysis of complex image content. It was also
proposed to use the Squeeze block in order to reduce
data dimensions. The newly proposed network, NU-
LiteNet, achieved high recognition accuracy as well
as reduced processing time, by using CNN models of
a reduced size. This made on-device processing possi-
ble, particularly for implementing an offline landmark
recognition facility on smartphones.

2. CONVOLUTIONAL NEURAL NETWORK

The convolutional neural network (CNN) has a
structure which is the same as that of a normal neural
network. It is classified as a feed-forward neural net-
work, which consists of a convolution layer, a pooling
layer and a fully connected layer. At least three of
these layers are stacked on a network to learn and
classify data. These layers, as well as the input layer,
are placed in the following order: input, convolution,
pooling, and fully connected.

The input layer is a layer that contains an image
dataset for training and testing. The image data is
in an RGB color space and the image size depends on
the selected network model. For example, a network

model that utilizes an image width of 256 pixels and
a height of 256 pixels will have data for one image
at [256 × 256 × 3], where 3 is the number of color
channels.

The convolution layer is the layer that operates
the multiplication of each pixel with filter coefficients.
This operation starts at the location (0,0) of the data
and moves by one pixel (stride 1) each time from left
to right and from top to bottom until all of the pixels
are covered. This process will result in the creation of
an activation map. For example, given that the size
of the image data is [224 × 224 × 3] and there are a
total of 96 filters, each of which has a size of 3×3, the
resulting activation map will be [111× 111× 3] when
the filter moves by two pixels (stride 2) each time.

The pooling layer comes after the convolution
layer. Its main function is to reduce the dimensions of
the data representation, which will reduce the num-
ber of parameters and calculations in the next layer.
The max pooling is the function that performs this
task. For example, in order to reduce data of size
[111× 111× 3] to half that size (i.e., [55× 55× 3]), a
filter of size 3× 3 and stride 2 are needed.

The last layer is the fully connected layer. Its main
function is to convert the output data to one dimen-
sion. CNN can be developed to learn a dataset by
increasing the number of hidden layers in order to
increase leaning capability. The network divides im-
age data into sub-images, each of which is analyzed
for features such as color, shape, and texture. These
features are used for image classification prediction
patterns.

3. NU-LITENET

This section presents the development of two types
of network architecture for CNNs: NU-LiteNet-A and
NU-LiteNet-B.

3.1 Added 5× 5 and 7× 7 Convolution

Considering the Expand block of SqueezeNet [13],
SqueezeNet chooses the use of small filters, such as
1×1 and 3×3 convolution, to detect smaller objects.
Another reason for using a small filter comes from the
design aspects of the model, because the size of the

Fig.1: Squeeze block and Expand block of
NU-LiteNet-A and NU-LiteNet-B compared with
SqueezeNet
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parameters is small and the processing time is mini-
mal. As a result of this, SqueezeNet is not as accurate
as GoogLeNet [9], but it is as accurate as AlexNet [8].
In this paper, we chose to add large convolution fil-
ters, such as 5 × 5 and 7 × 7, to the Expand blocks
in order to enhance accuracy, just like those used for
the Inception module of the GoogLeNet [9]. The use
of a large filter to detect objects is similar to a small
filter, but the difference is that the large filter helps to
identify or confirm the central position of the object.
When the data from the small filter and large filter
are concatenated, the model can confirm the position
of the desired object as shown in [14–17]. For this
reason, this model has greater accuracy. However,
an increase in the number of filters resulting from
adding the large 5 × 5 and 7 × 7 filter convolution
expand blocks caused an increase in processing time
and in the number of parameters. Therefore, due to
the large filter expand blocks, there was a need to re-
duce the size and depth of the model of SqueezeNet.
This was required to reduce the processing time and
the number of appropriately sized parameters to allow
the applications to be properly processed on smart-
phones.

3.2 NU-LiteNet-A

The NU-LiteNet-A was developed by modifying
SqueezeNet, which had the Squeeze and Expand
blocks shown in Fig. 1 (left). It introduced 5×5 con-
volution and 7×7 convolution into the Expand block,
as shown in Fig. 1 (center). If N was the number of
channels (depth) of the previous layer, NU-LiteNet-A
reduced N in the 1× 1 convolution or Squeeze block
by one fourth (i.e., N

4 ) of the previous layer. This
increased N in the expand block by 2 times that of
N in the Squeeze block (i.e., N

2 ) in every convolution
layer. As a result, the number of channels at the end
of the Expand block was doubled (i.e., N × 2) com-
pared to that of the previous layer. The details of
NU-LiteNet-A are summarized in Table 1.

3.3 NU-LiteNet-B

The NU-LiteNet-B changed the structure of NU-
LiteNet-A by changing the amount of depth, N, of
the Squeeze block to be the same as that of the pre-
vious layer. This corresponded to the structure of
SqueezeNet, as shown in Fig. 1 (right). In this struc-
ture, the Expand block received an amount of depth,
N, equal to that of the previous layer. This increased
the effectiveness of the network for data analysis, but
also increased the number of parameters and thus re-
quired longer processing time. The details of NU-
LiteNet-B are summarized in Table 1.

3.4 Completed Network structures

The complete architectures of NU-LiteNet-A and
NU-LiteNet-B are shown in Fig. 2. This research

Table 1: NU-LiteNet-A and NU-LiteNet-B
Layer Output NU-Lite-A NU-Lite-B
Input 224×224 -

Convolution 1 113×113 5×5, 64, stride 2, pad 3
Pooling 1 56×56 max pool, 3×3, stride 2

Convolution 2 56×56 1×1, 64, stride 2
Convolution 3 56×56 3×3, 64, stride 1, pad 1

Pooling 2 28×28 max pool, 3×3, stride 2
NU-Lite-Block 1 28×28 [Block-A], 128 [Block-B], 128

Pooling 3 14×14 max pool, 3×3, stride 2
NU-Lite-Block 2 14×14 [Block-A], 256 [Block-B], 256

Pooling 4 1×1 average pool
Fully connected 50 softmax

proposed to cut the number of layers and include an
Expand block. NU-LiteNet-A and NU-LiteNet-B had
only two modules each, and the number of channels
(depth) was N = 256 channels. This was because the
experimental data (shown in Section 4) had only 50
classes. If the amount of depth was increased, the
network would have had a large number of parame-
ters and required longer processing time. Therefore,
the design of the network considered the number of
parameters and the processing time that could be ap-
plied effectively on smartphones.

This design was suitable for smartphone process-
ing. The aim was to obtain a network of high ef-
fectiveness that worked as well as other state-of-the-
art CNN models while keeping the processing time
to a minimum. In Fig. 2, GoogLeNet is shown in
comparison with the proposed network architecture.
GoogLeNet had nine modules, whereas the proposed
network had only two modules, which reduced pro-
cessing time and model size.

4. EXPERIMENTAL RESULT

In the experiment, we trained the networks with a
high-performance computing (HPC) unit. It had the
following specifications: Intel(R) Xeon(R) E5-2683 v3
@ 2.00GHz 56 Core CPU, 64 GB RAM, and NVIDIA
Tesla K80 GPU. The operating system was Ubuntu
Server 14.04.5. For testing, we used a smartphone
with the following specifications: Samsung Exynos
Octa 7580 @ 1.6 GHz 8 Core CPU and 3 GB RAM,

Fig.3a: Singapore landmarks
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Fig.2: Architecture of NU-LiteNet.

with Android 6.0.1 as the operating system.

4.1 Databases

The experimental data was obtained from two
standard landmark datasets. The first set was from
Singapore landmarks [2] and consisted of 50 land-
marks that were popular with tourists (4,060 images),
some of which are shown in Fig. 3a. The second
dataset was the Paris dataset from Paris, France [18],
which consisted of 12 landmarks (6,412 images), some
of which are shown in Fig. 3b. For each dataset, im-
ages were divided into a training set and testing set,
at 90% and 10% respectively. The images were re-
sized to 256× 256 pixels.

4.2 Comparison of NU-LiteNet and other
models

In the experiment, all network models, including
AlexNet, GoogLeNet, SqueezeNet, MobileNet [19],
NU-LiteNet-A, and NU-LiteNet-B, were trained from

Fig.3b: Paris landmarks

scratch. The Singapore and Paris landmarks datasets
were used, and each set was divided into two parts: a
training set (90%) and a testing set (10%), with 10-
fold cross-validation. The hyperparameters for NU-
LiteNet-A and NU-LiteNet-B were as follows. Solver:
Stochastic Gradient Descent (SGD) [20]; Momentum:
0.9; Mini-batch size: 128; Learning rate: 0.1; Weight
decay: 0.0005; Epoch size: 100.

For the training process, we measured the param-
eters of the networks. The number of parameters
indicated the model size. For the testing process, we
measured the accuracy using 10-fold cross-validation.
The accuracy was measured in terms of the top-1 ac-
curacy as well as the top-5 accuracy.

Table 2 shows the experimental result obtained by
10-fold cross-validation for the Singapore landmark
dataset. It can be observed from the result that both
versions of NU-LiteNet were more effective for land-
mark recognition at top-1 accuracy as well as top-
5 accuracy than AlexNet, GoogLeNet, SqueezeNet,
and MobileNet. The accuracy was higher than that
of GoogLeNet by up to 7.4-10.46%. For the number
of parameters, it was discovered that NU-LiteNet-A
had the lowest number of parameters: 0.28M. This

Table 2: Recognition accuracy obtained by 10-fold
cross-validation. NU-LiteNet is compared with other
models, using the Singapore dataset.

Model Params (M) top-1 (%) top-5 (%)
AlexNet [8] 62.37 64.82 84.94

GoogLeNet [9] 6.02 70.69 88.75
SqueezeNet [13] 0.75 60.08 83.24
MobileNet [19] 3.21 79.26 93.58
NU-LiteNet-A 0.28 78.09 92.75
NU-LiteNet-B 0.94 81.15 93.96
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Table 3: Recognition accuracy obtained by 10-fold
cross-validation. NU-LiteNet is compared with other
models, using the Paris dataset.

Model Params (M) top-1 (%) top-5 (%)
AlexNet [8] 62.36 58.62 90.00

GoogLeNet [9] 6.01 59.97 91.10
SqueezeNet [13] 0.74 53.34 87.97
MobileNet [19] 3.20 64.53 94.06
NU-LiteNet-A 0.27 66.67 94.07
NU-LiteNet-B 0.93 69.58 94.65

Table 4: Execution time and model size obtained by
recognition on smartphone.

Model
Image size Execution time Size
(pixels) (ms/image) (MB)

AlexNet [8] 1620× 1080 1038 217
GoogLeNet [9] 1620× 1080 1244 23
SqueezeNet [13] 1620× 1080 773 2.86
MobileNet [19] 1620× 1080 1053 16.2
NU-LiteNet-A 1620× 1080 637 1.07
NU-LiteNet-B 1620× 1080 706 3.6

was 2.5 times lower than that of SqueezeNet.

The experiment results from the Paris dataset
showed similar trends to those of the Singapore
dataset in terms of recognition accuracy. Both ver-
sions of NU-LiteNet gave higher accuracy than the
other models. The accuracy was higher than that of
GoogLeNet by up to 6.7-9.61%, as shown in Table 3.

From Table 2 and Table 3, it can be observed that
NU-LiteNet-A used the lowest number of parameters.
NU-LiteNet-B provided the highest accuracy, while
the number of parameters obtained was about three
times higher than that of NU-LiteNet-A.

Fig.4: Snapshots from the landmark-recognition
program on a smartphone with Android: (left) the
first page, and (right) the query image taken by the
device.

4.3 Application for Landmark Recognition on
Android

For the development of an application on smart-
phones using Android, the trained models were uti-
lized for landmark recognition. The processing time
and model size (the space required to store the
model on a smartphone) were measured. Table 4
shows the result for the processing of an input im-
age of size 1620× 1080 pixels. The top three models
that required the lowest processing time were NU-
LiteNet-A (637 ms), NU-LiteNet-B (706 ms), and
SqueezeNet (773 ms). The top three models that
had the smallest model size were NU-LiteNet-A (1.07
MB), SqueezeNet (2.86 MB), and NU-LiteNet-B (3.6
MB). From this result, it can be observed that NU-
LiteNet-A was the most effective model in terms of
processing time as well as model size at 637 ms per
image and 1.07 MB respectively.

Fig. 4 and 5 show snapshots of the application
of mobile landmark recognition on a smartphone.
The recognition function can be used in the offline
mode, in which the on-device recognition module is
implemented. The user can take a picture and start
the process of recognition of the landmark using the
phone. The retrieved data are the name and prob-
ability score of the predicted landmark class. There
are also menus for history and events that can be
used to retrieve the complete information about the
landmark from the web (Wikipedia) if the phone is
connected to the internet. The event menu shows the
information about the event currently shown in the
actual area around the landmark. This information
can be used to advertise the landmark to tourists.

Fig.5: Snapshots from the landmark-recognition
program on a smartphone with Android: (left) the
recognition result showing the landmarks with the
highest similarity scores in deceasing order, and
(right) the information about the landmarks from
Wikipedia.



26 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.13, NO.1 May 2019

5. CONCLUSIONS

This paper presents NU-LiteNet, which adopted
the development idea of SqueezeNet to improve the
network structure of the convolutional neural network
(CNN). It aimed to reduce the model size to a degree
suitable for on-device processing on a smartphone.
The two versions of the proposed network were tested
on Singapore and Paris landmarks datasets, and it
was determined that NU-LiteNet could reduce the
model size by 2.6 times compared with SqueezeNet,
and it improved recognition performance. The exe-
cution time of NU-LiteNet on a smartphone was also
shorter than that of other CNN models. In future
work, we will continue to improve accuracy and re-
duce model size for large-scale image databases, such
as ImageNet, and country-scale landmark databases.

APPENDICES

A IMPLEMENTATION DETAILS

The data collected in the Singapore and Paris land-
marks datasets were divided into two parts: training
data and testing data. The training data for the two
sets was 256 × 256 pixels. Data augmentation was
done using the random crop image size of 224 × 224
pixels in a horizontal flip to increase the number of
images in the dataset. An improvement to enhance
the accuracy of neural networks with greater precision
was developed in [21] by adding Batch Normalization
after Convolutions of all layers, as well as in [11, 22]
to allow much higher learning rates. A problem with
the Internal covariate shift of [23] occurred during
the data training in lower hidden layers. For the ac-
tivation function, the Rectified Linear Unit [24, 25]
(ReLU) was used after the convolution layers in NU-
LiteNet-A and NU-LiteNet-B.

Looking at the performance of top-1 accuracy of
AlexNet, GoogLeNet, SqueezeNet, MobileNet and
both versions of NU-LiteNet, the training of the Sin-
gapore landmarks from epoch 1-100 was as shown
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Fig.6: Top-1 accuracy vs. number of epochs for
Singapore landmarks.
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Fig.7: Top-1 accuracy vs. number of epochs for
Paris landmarks.

in Fig. 6. Considering the accuracy of 60%, it
was observed that NU-LiteNet-B converged first at
epoch 10, followed by NU-LiteNet-A at epoch 15,
then GoogLeNet at epoch 29, AlexNet at epoch 34,
SqueezeNet at epoch 91 and finally MobileNet at
epoch 21. Considering the epoch 1-25 at a learn-
ing rate of 0.1 (LR = 0.1), it was observed that
both versions of NU-LiteNet converged better than
the AlexNet, GoogLeNet, SqueezeNet and MobileNet
models until epoch 26 at a LR = 0.01. NU-LiteNet-B
had higher top-1 accuracy than the other models dur-
ing the training with the highest accuracy of 81.15%
with the Singapore landmarks dataset.

The top-1 accuracy of AlexNet, GoogLeNet,
SqueezeNet, MobileNet and the two versions of the
NU-LiteNet training data set with Paris landmarks
are shown in Fig. 7. Considering the accuracy of
60%, it was observed that the NU-LiteNet-B and
MobileNet models converged at epoch 28, followed
by NU-LiteNet-A at epoch 29, but the AlexNet,
GoogLeNet and SqueezeNet models did not converge.
Accuracy was up to 60% for the AlexNet model con-
vergence which is capped at 58.62%, followed by
GoogLeNet at 59.97%, and 53.34% for SqueezeNet.
The highest model top1-accuracy for Paris landmarks
was recorded in NU-LiteNet-B with 69.58%, followed
by NU-LiteNet-A and MobileNet with 66.67% and
64.53% respectively.
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