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Enhancement of Gravitational Search
Algorithm using A Differential Mutation

Operator and Its Application on
Reconstructing Gene Regulatory Network
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ABSTRACT

Gravitational Search Algorithm (GSA) is a recent
stochastic search algorithm that is inspired from the
concepts of gravity rule and law of motion in physics.
Despite its success and attractiveness, it has some
coefficients and parameters that should be properly
tuned to improve its performance. This paper stud-
ies the performance of GSA by varying the param-
eters that controls its gravitational force. Then a
new differential mutation operator is proposed to en-
hance performance of GSA by accelerating its con-
vergence. The proposed algorithm, namely DMGSA,
is evaluated using 15 well-known benchmark func-
tions from the special session of CEC2013 with dif-
ferent characteristics including randomly shifted opti-
mum, rotation and non-separability. The results ob-
viously confirms the performance achieved from the
proposed mutation operator outperforms that from
the attempts of parameter tuning in the original GSA.
Lastly, DMGSA is applied for optimizing a small-
scale gene regulatory network. The result demon-
strates that its performance is highly competitive and
clearly surpasses original GSA.

Keywords: Gravitational Search Algorithm, Hybrid
Algorithm, Differential Mutation, Gene Regulatory
Network

1. INTRODUCTION

Nature-inspired metaheuristic algorithms are al-
gorithms that uses an iterative heuristic process to
search for optimal solutions from the search space.
Among them, evolutionary algorithms and swarm in-
telligence are very popular during the last few decades
due to its performance and ease of implementation.
Gravitational Search Algorithm (GSA) is another
metaheuristic algorithm that is inspired from the con-
cepts of gravity rules of physics [1]. Since proposed
in 2009, GSA has been well in focus and its vari-
ants have been developed and successfully applied in
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various optimization problems in many fields. Some
applications of GSA are in power engineering [2], civil
engineering [3], chemical industry [4], bioinformatics
[5], face recognition [6], clustering [7], feature selec-
tion [8], control engineering [9], etc. More applica-
tions and improved variants can be seen in a recent
comprehensive survey [10].

Despite its success so far, original GSA has some
inherent weaknesses that limit its performance. First,
GSA has a few constants governing its gravitational
coefficient and number of best solutions, called Kbest,
for calculating the driving force. The size of Kbestis
recommended to be high at the beginning and de-
creases to 1 during the search progress. Both gravita-
tional coefficient and Kbesthave a strong effect perfor-
mance of GSA and deserve a thorough investigation.
Second, GSA does not maintain and fully utilize the
best solutions in the current population to guide the
search direction [11].

The first part of this research is to comprehen-
sively study these in-built parameters using 6 well-
known benchmark functions for minimization. This
part aims to discover the optimal set of parameters
for further improvement using a directional mutation
operator that is inspired from differential evolution
algorithm [12]. Differential evolution (DE) has been
proved to be one of the most efficient algorithms for
optimization in continuous domain [13]. In the second
part of this research, the performance of the proposed
algorithm and the considered variants has been vali-
dated on 15 well-known benchmark functions of IEEE
Congress on Evolutionary Computation (CEC), 2013.
The comparative experiment is conducted in terms of
mean and standard deviation of final fitness obtained
and uses non-parametric Wilcoxon signed-rank test
for ranking the variants. Lastly the proposed algo-
rithm is applied to reconstruct a small-scale hypo-
thetical gene regulatory network (GRN). GRN is a
nonlinear ordinary differential equation model for an-
alyzing the gene expression to understand regulatory
mechanism among genes. Performance of the pro-
posed algorithm is statistically compared to original
GSA and another efficient hybrid algorithm.

The remaining of this paper are as follows. Sec-
tion 2 briefly reviews GSA and its variants. Section
3 analyzes GSA’s parameters and proposes the en-
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hancement. Section 4 explains the experimentation,
results and discussion. Section 5 investigates perfor-
mance of the proposed algorithm in reconstructing a
GRN. Finally, Section 6 concludes this paper with
some possible future works.

2. OVERVIEW OF GSA

GSA is an iterative population-based stochastic
search algorithm inspired by the Newton’s law of
gravity and law of motions. GSA simulates mass in-
teractions in a multi-dimensional search space under
the influence of gravitational forces. In GSA, a popu-
lation of NP agents of xi = [xi,1, xi,2, . . . , xi,D], where
i = 1, 2, 3, . . . , NP , are candidate solutions moving
in a search space of D dimensions. Each agent i
has its own velocity vi = [vi,1, vi,2, . . . , vi,D]. Dur-
ing the initialization, all the agents are created and
their positions are uniformly randomized within the
search boundary of each dimension. Then the agents
are moved by the force that are proportional to their
masses and their distance. In iteration t, the total
gravitational force on the ith agent is calculated from

Fi,j =
∑

k∈Kbest,k ̸=i

randk·Gt·Mk ·Mi

Ri,k + ε
·(xk,j−xi,j) (1)

where j = 1, 2, . . . , D; randk is random value within
the range [0, 1]; Mi and Mk are the masses of agent
i and k, respectively; Ri,k is the Euclidean distance
between agent i and k; ϵ represents a tiny value to
avoid division of zero. This gravitational force is cal-
culated from the top K agents called Kbest, where K
is defined by:

K = NP − (NP − 1)× t

tmax
(2)

tmax is the maximum iteration allowed. Gt is the
gravitational coefficient which is calculated from

Fig.1: Original Gravitational Search Algorithm.

Gt = G0 × exp(−α× t

tmax
), (3)

where G0 equals to 100, α equals to 20, as rec-
ommended in [1]. The mass Mi is defined by Mi =

qi/
∑NP

n=1 qn and

qi =
f(xi)− f(xworst)

f(xbest)− f(xworst)
(4)

where xbest and xworst are positions of the agent
with the best (lowest) and the agent with the worst
(highest) fitness values, respectively, for a minimiza-
tion problem. f(x) represents the fitness function
on agent x. After the gravitational force is com-
puted, the acceleration of each agent is calculated by
ati,j = Fi,j/Mi Then the velocity and new position of
each agent are computed as in (5) and (6).

vt+1
i,j = randi × vti,j + ati,j (5)

xt+1
i,j = xt

i,j + vt+1
i,j (6)

All the above procedure are repeated for tmax it-
erations. Then the position of the heaviest mass, or
the agent with lowest fitness value, is considered as
the optimal solution. The algorithm of GSA can be
outlined as in Fig 1.

Since GSA was introduced in 2009, many re-
searchers have proposed improved variants of GSA
with many different techniques. Some of them are
inspired from physics phenomena such as disruption
[14] and black hole [15], whereas some others are
mathematical techniques such as orthogonality [3]
and K-harmonic means [7]. Sarafrazi et al. [14] pro-
posed a disruption operator for GSA in which agents
can scatter or disrupt under the force exerted by
the heaviest agent. Doraghinejad et al. [15] intro-
duced astronomical black hole operator for GSA in
which the heaviest agent is considered as the black
hole that attracts other agents. Khatibinia et al. [3]
introduced an orthogonal crossover with a quantiza-
tion technique and a local search into the GSA for
accelerating convergence and avoiding local optima
simultaneously. Yin et al. [7] hybridized GSA with
K-harmonic means algorithm for clustering problem.

Hybridization with other algorithms have been
successfully reported including opposition-based
learning concept [2], particle swarm optimization
[4][5][11] and DE [16][17]. DE is an evolutionary al-
gorithm in which the population of members are iter-
atively processed through mutation and crossover op-
erations. In each iteration, a mutant member is cre-
ated using a mutation operator on a target member.
Then a trial member is built from the components
of either the mutant member or the target member
depending on a probability called crossover rate. If
the trial member has an equal or better fitness value,
it replaces the corresponding target member for next
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generation, otherwise the target member is retained.
This selection policy of DE guarantees that the over-
all fitness value of the population will never deterio-
rate. Detailed description of DE can be reached from
[12][13].

3. THE PROPOSED ALGORITHM

For all metaheuristic search algorithms, balancing
exploration and exploitation is a key success factor.
Exploration or diversification deals with searching for
promising subspaces with a high potential of optima,
while exploitation or intensification focuses on local
search for an optimum in the promising subspaces. In
GSA parameter K denotes the number of other best
agents for calculating the gravitational force which is
the main interaction between agents that drives them
to the optima. The parameter K is initialized to NP
(total number of agents) and is decreased linearly to
1, so as to support more exploration in early search
stage and gradually change to exploitation during the
search.

The gravitational coefficient G is another impor-
tant parameter of GSA controlling the magnitude of
force in (1) and decreases with time to control the
search accuracy. This G directly influences conver-
gence speed and, like K, balances the exploration and
exploitation. By analyzing eq. (3), it is obvious that
the value of G is highly dependent on G0 and the
rate of decent is controlled with α. The constants G0

and α, are recommended to be equal to 100 and 20,
respectively [1]. Fig 2 illustrates the changing rate of
G for α equals to 3, 7, and the original value of 20,
while keeping G0 equal to 100.

At the same time, it is interesting to examine the
performance if K is changed non-linearly against lin-
early as originally proposed [1]. To do this, we mimic
the exponential decay rate from G and we have

K = NP × exp(−β × t

tmax
)· (7)

A new parameter β controls the acceleration rate
of decent of K. As shown in Fig 3, the higher value
of β, the faster exponential term increases the decay
rate in the early stage than the original linear term
in (2).

Therefore the first goal of this research is to study
the performance if we change the values of G0, α
and β to other values. An experiment will be con-
ducted on a small subset of well-known benchmark
functions for minimization to discover the combina-
tions of [G0, α, β,NP ] that present the best perfor-
mance. NP is also included here since it is widely
known that population size generally has effects on
performance of a metaheuristic algorithm. Such best
combinations will be used for further improvement.

The improvement proposed in this research focuses
on the velocity and position update of the agent. Al-
though GSA identifies the best agent and the worst

Fig.2: Gravitational Coefficient G.

Fig.3: The number of best agents (K).

agent for calculating masses, it does not maintain and
fully utilize them in the current population to guide
the search direction [11]. Inspired from the DE [12],
the best agent and the worst agent together provide
fitness information useful for guiding the population
toward the optima. The proposed GSA in this work
modifies the steps 4 to 6 of the original GSA in Fig 1
by adding a novel differential mutation operator using
the best agent and the worst agent. The difference
of positions of the best agent and the worst agent
can be employed as a direction guide. This difference
when being multiplied with a random value assists in
bringing the current agent toward a better position.
This mutation would enhance the convergence as can
be seen in the experimentation thereafter. To avoid
excessive convergence that might cause undesirable
premature convergence, the proposed mutation will
be used on only particular dimensions regulated by a
parameter called crossover rate (CR). The higher CR
value, the more chance a dimension of the trial agent,
comes from the differential mutation, rather than the
original velocity and position update of GSA.

In addition, the selection policy of DE is utilized
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Fig.4: Velocity and position update of the proposed
DMGSA.

in which the new trial agent will replace the current
agent only if the new trial agent’s fitness value is bet-
ter. Therefore steps 4 to 6 in the original GSA will be
replaced with the algorithm as shown in Fig 4, where
randint(a, b) denotes a random integer between a and
b inclusively; rand(m,n) denotes a random value be-
tweenm and n. trial and target denote the trial agent
and target agent, respectively; best and worst denote
the agent with the best fitness value and with the
worst fitness value, respectively, in the current itera-
tion. Note that, to guarantee at least one dimension
gets the differential mutation like in DE, the condi-
tional statement has a conjunction term for checking
if the dimension d is equal to the pre-randomized in-
dex k. The Experiment II in the next section studies
performance of the proposed algorithm, namely dif-
ferential mutated GSA or DMGSA, with regard to
this new parameter CR.

4. EXPERIMENTATION

The experiment in the work has two steps. Experi-
ment I is a combination test to study the performance
of GSA by varying four parameters [G0, α, β,NP ].
Experiment II studies the performance improvement
of the proposed strategies on the three most efficient
variants obtained from Experiment I.

4.1 Experiment I: Setup

In this experiment, the performance of GSA are
tested using six widely-accepted benchmark func-
tions, namely Sphere, Schwefel, Rosenbrock, Quartic
with noise, Ackley and Rastrigin at dimension (D)
of 30. The search ranges are as shown in Table 1.
The combination of 4 parameters, G0, α, β,NP , for
testing are as follows:

G0 :30, 100, 300
α:3, 7, 20

β:3, 10, li (li stand for linear)
NP : 20, 40, 60

Values 3 and 10 of β are for calculating the num-
ber K in eq. (7) while the linear β means that the
number K is changed linearly using eq. (2). There
are 4 parameters to test, each of which has 3 val-
ues, therefore a total of 34 = 81 parameter cases or
combinations are to be tested. For each test case,
30 independent runs will be executed. Each run al-
lows a maximum number of objective function calls
(maxnfc) of 100,000 as stopping criterion. The mean
and s.d. of the final optimal values obtained from all
runs will be computed. Tables 2 and 3 report all 81
sets of means and s.d. for the Sphere function and
the Ackley function respectively. To conserve space,
those results of other functions can be obtained upon
request. The algorithm name is encoded with Gggg-
Aaa-Bbb-Nnn to conserve space as well; ggg denotes
the G0, aa denotes the α, bb denotes the β and the
nn denotes the NP. Note again that bb equal to ’li’
means the linearly changing as in eq. (2).

Table 1: Ranges of the benchmark functions in Ex-
periment I.

Function Range
F1 Sphere [-100, 100]
F2 Schwefel [-5.12, 5.12]
F3 Rosenbrock [-30, 30]
F4 Quartic with noise [-1.28, 1.28]
F5 Ackley [-32, 32]
F6 Rastrigin [-5.12, 5.12]

Non-parametric Wilcoxon’s signed rank test is con-
ducted to draw a statistically comparison at 0.05 sig-
nificant level between the two algorithms in the same
function. An algorithm j is ranked higher than algo-
rithm k (i.e. rj < rk) if the Wilcoxon signed-rank test
result of algorithms j against k gets a p-value below
0.05. Any two algorithms are ranked equally if the
Wilcoxon signed-rank test result is not significant.

Then the ranks of all six functions run with each
parameter case are collected and used to compute
the mean ranks as shown in the in Table 4. Col-
umn mean rank for unimodal is the mean rank for all
unimodal functions (F1 to F4), while the mean rank
for multimodal column is the mean rank for two mul-
timodal functions (F5 and F6). The last column is
the mean rank for all 6 tested functions. To conserve
space, only cases with top 5 ranks in any of the last 3
columns are presented here. The algorithms with the
top rank (=1) for three categories (unimodal, multi-
modal and all functions) are highlighted with italic
and bold font.
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Table 2: Means and S.D. of the fitness values obtained for function F1 Sphere.
Algorithm Mean±S.D. Algorithm Mean±S.D. Algorithm Mean±S.D.

G030-A03-B03-N20 4.969E+04±5.167E+03 G030-A03-B03-N40 5.261E+04±6.977E+03 G030-A03-B03-N60 5.532E+04±4.949E+03
G030-A03-B10-N20 6.156E+04±1.034E+04 G030-A03-B10-N40 6.224E+04±7.220E+03 G030-A03-B10-N60 5.715E+04±6.415E+03
G030-A03-Bli-N20 4.038E+04±6.278E+03 G030-A03-Bli-N40 5.261E+04±5.471E+03 G030-A03-Bli-N60 5.462E+04±3.929E+03
G030-A07-B03-N20 5.830E+04±7.071E+03 G030-A07-B03-N40 5.821E+04±6.897E+03 G030-A07-B03-N60 5.913E+04±6.830E+03
G030-A07-B10-N20 6.082E+04±5.687E+03 G030-A07-B10-N40 6.356E+04±4.060E+03 G030-A07-B10-N60 6.177E+04±4.971E+03
G030-A07-Bli-N20 5.552E+04±6.800E+03 G030-A07-Bli-N40 6.205E+04±7.149E+03 G030-A07-Bli-N60 5.867E+04±3.311E+03
G030-A20-B03-N20 6.202E+04±7.070E+03 G030-A20-B03-N40 6.066E+04±4.467E+03 G030-A20-B03-N60 5.855E+04±6.624E+03
G030-A20-B10-N20 6.769E+04±8.763E+03 G030-A20-B10-N40 6.053E+04±5.932E+03 G030-A20-B10-N60 6.467E+04±6.975E+03
G030-A20-Bli-N20 6.246E+04±8.416E+03 G030-A20-Bli-N40 6.493E+04±4.951E+03 G030-A20-Bli-N60 5.893E+04±7.172E+03
G100-A03-B03-N20 9.854E+01±2.946E+02 G100-A03-B03-N40 2.649E+04±4.135E+03 G100-A03-B03-N60 3.762E+04±5.470E+03
G100-A03-B10-N20 3.632E+04±6.418E+03 G100-A03-B10-N40 5.029E+04±3.961E+03 G100-A03-B10-N60 5.364E+04±4.566E+03
G100-A03-Bli-N20 8.641E-01±2.032E-01 G100-A03-Bli-N40 1.492E+04±3.767E+03 G100-A03-Bli-N60 2.715E+04±4.191E+03
G100-A07-B03-N20 2.985E+04±4.338E+03 G100-A07-B03-N40 4.042E+04±6.438E+03 G100-A07-B03-N60 4.825E+04±5.336E+03
G100-A07-B10-N20 4.277E+04±5.287E+03 G100-A07-B10-N40 5.440E+04±5.298E+03 G100-A07-B10-N60 5.336E+04±4.257E+03
G100-A07-Bli-N20 2.163E+04±1.781E+03 G100-A07-Bli-N40 4.090E+04±4.118E+03 G100-A07-Bli-N60 4.831E+04±4.420E+03
G100-A20-B03-N20 5.156E+04±9.801E+03 G100-A20-B03-N40 5.609E+04±7.152E+03 G100-A20-B03-N60 5.525E+04±3.953E+03
G100-A20-B10-N20 5.981E+04±6.791E+03 G100-A20-B10-N40 5.628E+04±6.578E+03 G100-A20-B10-N60 6.264E+04±5.568E+03
G100-A20-Bli-N20 5.046E+04±6.598E+03 G100-A20-Bli-N40 5.480E+04±3.895E+03 G100-A20-Bli-N60 5.985E+04±6.493E+03
G300-A03-B03-N20 1.093E+00±3.260E-01 G300-A03-B03-N40 8.605E-01±2.653E-01 G300-A03-B03-N60 7.023E-01±2.632E-01
G300-A03-B10-N20 8.947E+00±1.929E+00 G300-A03-B10-N40 1.067E+04±3.871E+03 G300-A03-B10-N60 2.572E+04±4.680E+03
G300-A03-Bli-N20 3.221E+00±8.570E-01 G300-A03-Bli-N40 1.391E+00±1.876E+00 G300-A03-Bli-N60 2.617E+00±6.230E+00
G300-A07-B03-N20 1.520E-02±5.989E-03 G300-A07-B03-N40 3.149E+03±2.807E+03 G300-A07-B03-N60 2.088E+04±4.495E+03
G300-A07-B10-N20 5.469E+00±6.025E+00 G300-A07-B10-N40 2.295E+04±3.613E+03 G300-A07-B10-N60 3.866E+04±4.003E+03
G300-A07-Bli-N20 5.747E-02±2.628E-02 G300-A07-Bli-N40 1.292E-02±3.368E-03 G300-A07-Bli-N60 1.541E+04±2.404E+03
G300-A20-B03-N20 1.668E+04±6.771E+03 G300-A20-B03-N40 4.044E+04±5.679E+03 G300-A20-B03-N60 4.751E+04±2.916E+03
G300-A20-B10-N20 2.635E+04±3.069E+03 G300-A20-B10-N40 4.529E+04±3.731E+03 G300-A20-B10-N60 4.902E+04±4.951E+03
G300-A20-Bli-N20 1.645E+04±2.557E+03 G300-A20-Bli-N40 3.790E+04±7.217E+03 G300-A20-Bli-N60 4.767E+04±5.483E+03

Table 3: Means and S.D. of the fitness values obtained for function F5 Ackley.
Algorithm Mean±S.D. Algorithm Mean±S.D. Algorithm Mean±S.D.
G030-A03-B03-N20 19.31±1.09 G030-A03-B03-N40 8.17±9.55 G030-A03-B03-N60 0.32±0.08
G030-A03-B10-N20 1.43±0.24 G030-A03-B10-N40 14.44±3.03 G030-A03-B10-N60 18.57±0.67
G030-A03-Bli-N20 12.20±8.60 G030-A03-Bli-N40 17.55±5.75 G030-A03-Bli-N60 5.19±7.27
G030-A07-B03-N20 15.71±7.84 G030-A07-B03-N40 5.80±4.20 G030-A07-B03-N60 17.77±0.54
G030-A07-B10-N20 1.38±0.87 G030-A07-B10-N40 18.27±0.62 G030-A07-B10-N60 19.32±0.56
G030-A07-Bli-N20 18.64±2.24 G030-A07-Bli-N40 0.56±1.21 G030-A07-Bli-N60 16.44±0.90
G030-A20-B03-N20 17.70±0.95 G030-A20-B03-N40 19.66±0.27 G030-A20-B03-N60 19.81±0.38
G030-A20-B10-N20 18.27±0.83 G030-A20-B10-N40 20.05±0.16 G030-A20-B10-N60 20.13±0.18
G030-A20-Bli-N20 17.23±0.92 G030-A20-Bli-N40 19.60±0.24 G030-A20-Bli-N60 19.93±0.19
G100-A03-B03-N20 15.96±7.60 G100-A03-B03-N40 12.46±9.46 G100-A03-B03-N60 7.91±8.85
G100-A03-B10-N20 20.31±0.15 G100-A03-B10-N40 18.41±5.56 G100-A03-B10-N60 8.91±9.15
G100-A03-Bli-N20 14.61±8.25 G100-A03-Bli-N40 10.56±9.07 G100-A03-Bli-N60 5.25±7.46
G100-A07-B03-N20 15.19±7.60 G100-A07-B03-N40 13.44±8.82 G100-A07-B03-N60 11.39±8.23
G100-A07-B10-N20 20.24±0.08 G100-A07-B10-N40 12.68±9.08 G100-A07-B10-N60 0.71±0.73
G100-A07-Bli-N20 13.52±8.77 G100-A07-Bli-N40 12.76±7.68 G100-A07-Bli-N60 14.61±6.29
G100-A20-B03-N20 19.22±0.93 G100-A20-B03-N40 9.19±8.68 G100-A20-B03-N60 14.89±0.95
G100-A20-B10-N20 19.83±0.12 G100-A20-B10-N40 1.90±0.49 G100-A20-B10-N60 16.48±0.59
G100-A20-Bli-N20 18.09±4.54 G100-A20-Bli-N40 6.36±4.94 G100-A20-Bli-N60 14.10±0.89
G300-A03-B03-N20 20.26±0.10 G300-A03-B03-N40 14.68±8.55 G300-A03-B03-N60 12.91±9.17
G300-A03-B10-N20 20.33±0.14 G300-A03-B10-N40 18.38±5.40 G300-A03-B10-N60 19.79±0.55
G300-A03-Bli-N20 16.95±7.11 G300-A03-Bli-N40 10.90±8.58 G300-A03-Bli-N60 15.78±7.38
G300-A07-B03-N20 15.83±7.85 G300-A07-B03-N40 17.41±5.88 G300-A07-B03-N60 11.80±8.86
G300-A07-B10-N20 20.34±0.12 G300-A07-B10-N40 16.08±6.86 G300-A07-B10-N60 15.32±7.23
G300-A07-Bli-N20 12.38±8.28 G300-A07-Bli-N40 11.67±8.85 G300-A07-Bli-N60 10.59±6.97
G300-A20-B03-N20 16.39±6.22 G300-A20-B03-N40 18.55±1.93 G300-A20-B03-N60 18.72±1.30
G300-A20-B10-N20 19.35±1.55 G300-A20-B10-N40 16.81±6.03 G300-A20-B10-N60 19.34±1.17
G300-A20-Bli-N20 17.25 ±5.04 G300-A20-Bli-N40 18.66±1.21 G300-A20-Bli-N60 19.24±0.66
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Table 4: Performance rankings for each function and function group. Only the top 5 ranks in each group
(in the last three columns) are shown. .

Mean rank for Mean rank for Mean rank for all
Algorithm F1 F2 F3 F4 F5 F6

unimodal multimodal 6 functions
G100-A07-B03-N20 27 11 15 5 35 37 4 35 6
G300-A07-B03-N20 2 19 9 12 39 38 1 39 2
G300-A07-Bli-N20 3 21 11 30 22 32 5 16 3
G030-A07-Bli-N40 74 6 20 22 2 9 22 1 9
G100-A07-Bli-N40 35 12 1 18 25 19 6 8 1
G100-A20-B03-N40 57 38 61 35 14 22 51 3 30
G100-A20-Bli-N40 53 70 74 58 10 4 79 2 46
G300-A07-B03-N40 14 13 12 13 49 43 2 54 12
G300-A07-Bli-N40 1 18 47 10 19 25 8 8 4
G030-A03-Bli-N60 52 23 56 16 7 31 32 5 22
G100-A20-Bli-N60 67 62 54 56 29 7 73 3 48
G300-A07-B03-N60 20 14 3 20 20 47 3 27 5

4.2 Experiment I: Results and Discussion

It can be observed from Table 4 that while G300-
A07-B03-N20 outperforms in unimodal function set,
its performance is disappointing for multimodal func-
tions with a mean rank of 39. Similarly while G030-
A07-Bli-N40 outperforms in multimodal function set,
it is ranked 22 for unimodal functions. This demon-
strates that parameter setting of original GSA highly
depends on characteristics of the functions. The best
performer for all six functions tested on average be-
comes G100-A07-Bli-N40, with relatively good ranks
of 6 and 8 for unimodal and multimodal sets respec-
tively.

By analyzing values of parameters for these top
performers, we may summarize that G0 = 100, α = 7
and a linearly decreasing K is recommended for solv-
ing a problem with unknown characteristics. For uni-
modal functions, one should increase the G0 and re-
duce NP for faster convergence. And for multimodal
functions, G0 should be reduced to avoid premature
convergence.

4.3 Experiment II: Setup

This experiment will improve GSA with the
selected top parameter cases from experiment I,
which includes G300-A07-B03-N20, G030-A07-Bli-
N40, and G100-A07-Bli-N40. The proposed changes
are as explained in section 3. The performance will be
evaluated using the first 15 benchmark functions in
the special session of CEC 2013 [18]. This benchmark
suit has different characteristics often found in real-
world problems and consists of 5 unimodal functions
(C1 - C5) and 10 multimodal functions (C6 - C15).
All functions have their optimum shifted randomly;
and many of which are rotated and non-separable
or asymmetric. Detailed descriptions can be reached
from [18]. The test will be conducted on 30 dimen-
sions. Since the parameter CR controls the probabil-
ity of running the differential mutation, three differ-
ent values of CR in {0.15, 0.5, 0.85} will be evaluated
for the proposed algorithm. Thus the following 15
variants will be tested for each function.

GSA-NP : original GSA with NP = 20, 40 and 60
G300-A07-B03-N20
G030-A07-Bli -N40
G100-A07-Bli -N40\

 from Experiment I

G300-A07-B03-N20 with CR = 0.15, 0.5 and 0.85
G030-A07-Bli-N40 with CR = 0.15, 0.5 and 0.85
G100-A07-Bli-N40 with CR = 0.15, 0.5 and 0.85.

Each variant will be executed for 30 independent
runs. Each run will terminate at the maximum num-
ber of objective function calls equal to 200,000. The
mean and s.d. of the final fitness values obtained from
all runs will be computed and tabulated in Tables 5
to 7. Like in experiment I, Wilcoxon’s signed rank
test is conducted to draw a statistically comparison
between the two variants at 0.05 significant level in
order to rank all variants in the same test function.

4.4 Experiment II: Results and Discussion

The ranks of each algorithm are averaged for all
15 functions and grouped by modality as shown in
Table 8. A lower average rank presents a better per-
formance. It’s obvious from this table that the origi-
nal GSA is defeated by all proposed variants. G300-
A07-B03-N20-C0.85 outperforms in unimodal func-
tions while G300-A07-B03-N20-C0.15 outperforms in
the cases of multimodal functions and for all 15 tested
functions. Both winner variants are with G0 = 300,
α = 7, β = 3 and NP = 20, but with different CR
values. A higher value of G0 offers enough conver-
gence speed in the early iterations. The exponential
decay of gravitational coefficient G with α = 7 and
the exponential decay of number K with β = 3 to-
gether shift the exploration to exploitation in a right
pace.

Difference values of the parameter CR are recom-
mended for different function characteristics. A high
value of CR, like 0.85, is recommended for unimodal
functions to take advantage of fast convergence of the
proposed differential mutation. In contrast, a lower
value of CR, e.g. 0.15, outperforms for the cases of
multimodal or unknown functions which prefer grav-
itational search operator to the differential mutation.
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Another observation of the Table 8 is that the vari-
ants with the proposed differential mutation operator
outperform the variants without in all 3 cases. For
example, G030-A07-Bli-N40 has an average rank of
12.1, while its DMGSA variants with CR equals to
0.15, 0.5 and 0.85 have average ranks of 5.0, 4.3 and
3.9, respectively. Similar outcome is for G300-A07-
B03-N20 and G100-A07-Bli-N40. This confirms the
effectiveness of the proposed mutation operator, re-
gardless of the inherent parameters of GSA.

Fig 5 illustrates average convergence graphs of
some CEC2013 functions for comparing the conver-
gence of tested variants. The convergence graphs
of GSA-N20 and G300-A07-B03-N20 can sometimes
fluctuate as clearly seen in functions C14 and C12.
This is because the replacement policy in original
GSA is not greedy as in the proposed DMGSA. How-
ever the GSA configuration of G0 = 300, α = 7, β = 3
and NP = 20 considerably outperforms the original
GSA (with G0 = 100, α = 20 with a linearly de-
creasing K) in all cases. Furthermore, the proposed
differential mutation successfully assists in improving
the performance in most cases.

5. APPLICATION FOR RECONSTRUCT-
ING GENE REGULATORY NETWORK

This section describes an application of DMGSA
for reconstructing gene regulatory network (GRN).
GRN plays a very important role in cellular
metabolism during development of living organism.
With current increasing number of DNA and mRNA
sequences are becoming available, reconstructing
gene networks from expression profile data can help
biologists investigate complex interactions among
genes of an organism. In computational biology, re-
constructing GRN employs mathematical model for
analysis of gene expression data. The reconstructing
process requires selecting the network model and fit-
ting structural parameters of the network to the avail-
able data [20]. The most popular and well-researched
model is S-system model, which is an ordinal differen-
tial equation model characterized by non-linear power
law functions [21]. The model is given by

dXi

dt
= αi

N∏
j=1

X
gi,j
j − βi

N∏
j=1

X
hi,j

j (8)

where N is the number of genes in the system and
Xi is the expression level of the gene i. The first
term represents factors that promote the expression
Xi while the second term represents factors that in-
hibit the expression. Parameters αi and βi are non-
negative rate constants, whereas gi,j and hi,j are ki-
netic orders that reflect the intensity of interactions
from gene j to i in the synthesis and degradation pro-
cesses, respectively. Reconstructing GRN of N genes
with S-system model with (8) can be considered as
an optimization problem with 2 ×N(N + 1) param-

eters of {αi, βi, gi,j , hi,j} that must be estimated si-
multaneously [22][23]. This means that the number
of parameters increasing quadratically; for example,
there are 60 parameters to be optimized for a small
five-gene GRN.

5.1 Algorithms and Parameter Setting

In this section, the proposed DMGSA, original
GSA and OABCDE are employed to optimize a small-
scale five-gene GRN problem in order to compare the
performance. OABCDE is a hybrid algorithm of arti-
ficial bee colony optimization algorithm and DE with
an opposition-based learning to enhance exploration
and exploitation simultaneously [24]. Details and pa-
rameter settings of OABCDE can be reached from
[24]. For the case of DMGSA, we choose the optimal
combination of G0 = 300, α = 7 and β = 3, while
CR are tested for both 0.15 and 0.85; thus they are
named for brevity as DMGSA-15 and DMGSA-85,
respectively.

By using these optimization algorithms, some mea-
sure is required to guide the population in the search
space and hence is the fitness function. This work
uses the mean quadratic discrepancy between the
model output Xcal and observed expression Xact in
(9), which is the most common quality assessment
criterion [23],

f =
N∑
i=1

T∑
t=1

(
Xcal,i,t −Xact,i,t

Xact,i,t

)2

(9)

The GRN problem in this work is a hypothetical
network generated by the parameters given in Table
9. The gene expression levels of the networks are
plotted on the left hand side of Fig 6, each consists of
50 time course of expression. The search space for αi

and βi, is [0.0, 15.0] and for gi,j and hi,j to [-3.0, 3.0].
Delta time is 0.01. The initial value (T0) of 5 genes are
[0.7, 0.12, 0.14, 0.16, 0.18]. A structure skeletalizing
is applied to reduce the computational burden in a
similar manner by [22][25]. If the absolute value of a
parameter is less than a threshold value δ, then the
parameter is reset to 0. In this experiment, we use δ
= 0.001.

Since the optimization problem in this sec-
tion is a hypothetical five-gene GRN, each agent
or individual of the population is encoded as [
α1, . . . , α5, β1, . . . , β5, g1,1, . . . , g5,5, h1,1, . . . , h5,5] with
60 dimensions. Each algorithm runs by using a pop-
ulation size of 40 and 80 to investigate the differ-
ence. In each case, the algorithm runs for 30 indepen-
dent runs as the algorithms are stochastic. Maximum
number of objective function calls for each run is set
to 400,000.

5.2 Results and Discussion

Table 10 shows basic statistical results of the final
fitness values from running each algorithm; sorted
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Table 5: Means and s.d. of fitness values obtained from 30 independent runs of unimodal functions (C1-
C5) in CEC2013.

Algorithm C11 C12 C13 C14 C15
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

GSA-N20 7.849E+04 9.937E+03 2.726E+09 1.221E+09 4.945E+22 1.895E+23 1.005E+07 1.735E+07 7.259E+04 3.188E+04
G300-A07-B03-N20 1.794E-02 5.983E-03 2.930E+05 9.419E+04 2.036E+05 2.357E+05 7.102E+04 2.134E+04 5.793E-03 1.738E-03
G300-A07-B03-N20-C0.15 8.894E-04 3.502E-04 2.596E+07 9.732E+06 6.716E+09 3.925E+09 4.502E+04 6.552E+03 1.313E-03 3.410E-04
G300-A07-B03-N20-C0.50 8.033E-03 1.315E-03 4.976E+07 1.649E+07 3.216E+09 3.501E+09 2.926E+04 5.694E+03 3.019E-03 9.292E-04
G300-A07-B03-N20-C0.85 1.293E-03 2.447E-04 3.251E+07 2.102E+07 2.120E+09 4.334E+09 1.654E+04 5.847E+03 6.477E-04 1.611E-04
GSA-N40 8.578E+04 1.117E+04 2.393E+09 9.139E+08 2.727E+21 6.726E+21 3.826E+06 7.008E+06 6.281E+04 1.994E+04
G030-A07-Bli-N40 8.745E+04 1.165E+04 2.601E+09 7.857E+08 2.993E+22 1.032E+23 1.742E+06 2.466E+06 5.808E+04 2.098E+04
G030-A07-Bli-N40-C0.15 9.442E-04 2.382E-04 2.829E+07 9.119E+06 1.005E+10 3.385E+09 5.783E+04 9.280E+03 2.588E-04 9.828E-05
G030-A07-Bli-N40-C0.50 6.793E-04 8.984E-05 5.736E+07 1.466E+07 5.098E+09 4.674E+09 4.389E+04 6.302E+03 1.643E-04 3.372E-05
G030-A07-Bli-N40-C0.85 3.851E-04 7.143E-05 4.799E+07 1.355E+07 7.635E+09 1.074E+10 4.067E+04 8.365E+03 1.044E-04 1.786E-05
GSA-N60 8.680E+04 1.162E+04 2.603E+09 7.795E+08 1.836E+22 7.736E+22 3.528E+06 5.308E+06 5.566E+04 2.069E+04
G100-A07-Bli-N40 6.233E+04 8.445E+03 1.968E+09 8.338E+08 1.631E+21 3.358E+21 4.083E+06 7.186E+06 4.465E+04 1.577E+04
G100-A07-Bli-N40-C0.15 2.999E-03 8.083E-04 2.704E+07 1.056E+07 8.502E+09 4.004E+09 5.337E+04 9.103E+03 1.110E-03 3.896E-04
G100-A07-Bli-N40-C0.50 2.199E-03 3.334E-04 5.422E+07 1.508E+07 5.230E+09 5.194E+09 4.476E+04 8.145E+03 7.077E-04 1.870E-04
G100-A07-Bli-N40-C0.85 1.262E-03 1.492E-04 4.725E+07 1.758E+07 3.447E+09 4.042E+09 3.758E+04 8.698E+03 5.137E-04 1.165E-04

Table 6: Means and s.d. of fitness values obtained from 30 independent runs of multimodal functions (C6 -
C10) in CEC2013 .

Algorithm C11 C12 C13 C14 C15
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

GSA-N20 2.084E+04 6.042E+03 1.049E+08 1.804E+08 2.141E+01 7.375E-02 5.131E+01 1.712E+00 1.431E+04 2.479E+03
G300-A07-B03-N20 2.585E+01 1.988E+01 1.290E+02 3.165E+01 2.139E+01 8.234E-02 2.349E+01 3.979E+00 3.540E-01 8.739E-02
G300-A07-B03-N20-C0.15 2.896E+01 1.873E+01 1.252E+02 3.194E+01 2.095E+01 4.230E-02 3.077E+01 1.948E+00 1.212E-01 4.885E-02
G300-A07-B03-N20-C0.50 2.522E+01 2.032E+01 1.001E+02 3.737E+01 2.097E+01 4.419E-02 3.495E+01 1.631E+00 1.622E-01 3.780E-02
G300-A07-B03-N20-C0.85 2.208E+01 1.732E+01 1.064E+02 4.642E+01 2.096E+01 4.481E-02 3.787E+01 1.439E+00 6.011E-02 1.617E-02
GSA-N40 1.930E+04 4.370E+03 3.923E+07 4.895E+07 2.134E+01 1.158E-01 5.007E+01 2.228E+00 1.393E+04 1.868E+03
G030-A07-Bli-N40 1.993E+04 5.149E+03 5.531E+07 6.248E+07 2.135E+01 7.744E-02 5.027E+01 1.082E+00 1.481E+04 2.942E+03
G030-A07-Bli-N40-C0.15 5.828E+01 1.614E+01 1.185E+02 2.282E+01 2.095E+01 5.493E-02 3.085E+01 1.059E+00 1.787E+01 4.621E+00
G030-A07-Bli-N40-C0.50 6.263E+01 3.291E+01 9.873E+01 1.814E+01 2.096E+01 4.356E-02 3.545E+01 1.012E+00 1.309E+00 3.481E-01
G030-A07-Bli-N40-C0.85 2.713E+01 2.002E+01 8.293E+01 1.862E+01 2.094E+01 6.816E-02 3.839E+01 1.681E+00 2.113E-02 1.135E-02
GSA-N60 2.001E+04 4.329E+03 2.121E+07 2.362E+07 2.135E+01 6.348E-02 4.970E+01 1.705E+00 1.184E+04 2.133E+03
G100-A07-Bli-N40 1.596E+04 3.681E+03 3.296E+07 4.481E+07 2.136E+01 8.237E-02 5.042E+01 3.041E+00 1.117E+04 1.736E+03
G100-A07-Bli-N40-C0.15 5.656E+01 1.939E+01 1.194E+02 1.985E+01 2.096E+01 5.181E-02 2.975E+01 1.101E+00 1.825E+01 7.307E+00
G100-A07-Bli-N40-C0.50 3.555E+01 3.237E+01 1.051E+02 2.464E+01 2.097E+01 6.620E-02 3.589E+01 1.380E+00 1.294E+00 1.596E+00
G100-A07-Bli-N40-C0.85 3.084E+01 2.056E+01 7.535E+01 3.007E+01 2.097E+01 5.291E-02 3.877E+01 8.891E-01 3.447E-02 7.374E-03

Table 7: Means and s.d. of fitness values obtained from 30 independent runs of multimodal functions (F11
- F15) in CEC2013.

Algorithm C11 C12 C13 C14 C15
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

GSA-N20 1.447E+03 2.399E+02 1.288E+03 7.751E+01 1.303E+03 1.796E+02 1.035E+04 6.345E+02 1.037E+04 4.784E+02
G300-A07-B03-N20 1.203E+02 2.592E+01 1.811E+02 3.913E+01 4.610E+02 1.817E+02 3.603E+03 5.389E+02 3.755E+03 6.297E+02
G300-A07-B03-N20-C0.15 1.415E+00 1.969E+00 2.178E+02 1.839E+01 2.241E+02 2.037E+01 8.898E+02 1.414E+02 5.989E+03 3.204E+02
G300-A07-B03-N20-C0.50 9.708E+01 1.077E+01 2.069E+02 1.589E+01 2.173E+02 2.229E+01 4.200E+03 3.981E+02 7.154E+03 2.874E+02
G300-A07-B03-N20-C0.85 1.004E+02 3.799E+01 2.351E+02 2.186E+01 2.334E+02 2.237E+01 5.984E+03 5.029E+02 7.427E+03 1.939E+02
GSA-N40 1.371E+03 2.339E+02 1.401E+03 1.612E+02 1.336E+03 1.817E+02 1.007E+04 5.752E+02 1.005E+04 4.178E+02
G030-A07-Bli-N40 1.380E+03 2.153E+02 1.428E+03 1.968E+02 1.387E+03 1.668E+02 9.965E+03 7.450E+02 1.000E+04 3.937E+02
G030-A07-Bli-N40-C0.15 2.359E+01 2.775E+00 2.384E+02 2.074E+01 2.494E+02 1.439E+01 1.296E+03 1.709E+02 5.956E+03 3.179E+02
G030-A07-Bli-N40-C0.50 1.240E+02 1.000E+01 2.230E+02 1.293E+01 2.355E+02 1.402E+01 4.302E+03 3.245E+02 7.214E+03 3.376E+02
G030-A07-Bli-N40-C0.85 1.724E+02 1.620E+01 2.314E+02 2.853E+01 2.267E+02 1.588E+01 6.039E+03 4.845E+02 7.303E+03 3.592E+02
GSA-N60 1.299E+03 2.075E+02 1.354E+03 1.223E+02 1.306E+03 1.866E+02 9.724E+03 4.140E+02 9.799E+03 4.635E+02
G100-A07-Bli-N40 1.063E+03 1.274E+02 1.038E+03 9.709E+01 1.061E+03 1.236E+02 9.838E+03 4.916E+02 9.721E+03 4.284E+02
G100-A07-Bli-N40-C0.15 2.277E+01 1.884E+00 2.348E+02 1.936E+01 2.445E+02 1.972E+01 1.236E+03 1.601E+02 5.910E+03 3.629E+02
G100-A07-Bli-N40-C0.50 1.226E+02 1.051E+01 2.338E+02 1.889E+01 2.308E+02 1.091E+01 4.351E+03 2.879E+02 7.317E+03 3.451E+02
G100-A07-Bli-N40-C0.85 1.805E+02 2.245E+01 2.207E+02 2.149E+01 2.209E+02 1.633E+01 6.143E+03 4.069E+02 7.327E+03 2.697E+02
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Table 8: Average ranks of tested variants.
Average rank of Average rank of Average rank of

Algorithm
unimodal C1 - C5 multimodal C6 - C15 all 15 functions

GSA-N20 13.0 12.2 12.5
G300-A07-B03-N20 6.0 4.6 5.1
G300-A07-B03-N20-C0.15 4.6 2.3 3.1
G300-A07-B03-N20-C0.50 5.8 3.2 4.1
G300-A07-B03-N20-C0.85 3.6 4.5 4.2
GSA-N40 12.0 11.6 11.7
G030-A07-Bli-N40 12.8 11.8 12.1
G030-A07-Bli-N40-C0.15 5.0 5.0 5.0
G030-A07-Bli-N40-C0.50 4.2 4.4 4.3
G030-A07-Bli-N40-C0.85 4.0 3.8 3.9
GSA-N60 12.2 11.3 11.6
G100-A07-Bli-N40 11.2 11.0 11.1
G100-A07-Bli-N40-C0.15 6.8 4.4 5.2
G100-A07-Bli-N40-C0.50 6.0 4.0 4.7
G100-A07-Bli-N40-C0.85 3.8 3.8 3.8

ascendingly by the mean of fitness values. Non-
parametric Wilcoxon signed-rank test at 0.05 sig-
nificant level is used for comparison between any
two algorithms. Any algorithms with the same rank
are those whose statistical comparison are not sig-
nificant. It can be observed that running one al-
gorithm using different NP (=40 and 80) does not
make any statistical significance. The performance of
DMGSA-85 and OABCDE are not statistically differ-
ent; they both outperform DMGSA-15; and original
GSA is defeated. That is DMGSA-85 ≈ OABCDE
>> DMGSA-15 >> GSA, regardless of NP. GRN
problem with this high dimension is multimodal in
nature, and hence a higher value of CR surpasses a
low CR in DMGSA. This is consistent with the re-
sults in experiment II.

Although performance of DMGSA-85 is not statis-
tical different with OABCDE, DMGSA-85 provides
the best result (lowest fitness) at 0.065, better than
OABCDE. This is meaningful in real practice which
emphasizes on the optimal solution achieved more
than the average results, given enough time. All
codes in the research are Java 8 running with Net-
Beans 8.2 on 64-bit Windows 10 and i7 CPU at 3.4
GHz with 8 GB of main memory. Running time of
20 runs for DMGSA, GSA and OABCDE are ap-
proximate 25, 25 and 20 minutes respectively using
only one core. The time complexity of DMGSA and
OABCDE will be discussed in the next subsection.

Fig 6 illustrates time series of the tested GRN. The
left hand side is the actual time series from simulation
and the right hand side is the time series produced
from the best run of DMGSA-0.85. We can observe
only minor difference between both figures.

5.3 Running Time Complexity

From Fig 4, the time complexity of velocity and
position update of the proposed DMGSA is O(D),
which is the same as of the original GSA. From Fig
1, the time complexity of Step 1 and Step 2 is O(NP ),
Step 2 is O(D2), Step 4 and Step 5 is O(D). Since
each agent performs all these steps within a genera-
tion, the time complexity for one generation of both
GSA and DMGSA is equal to O(NP ·D2).

For OABCDE [24], each generation is composed
of the following 3 actions: the employed bee’s explor-
ing, the onlooker bee’s dancing and the opposition-
based learning. Each of them has time complexity of
O(NP ·D), O(NP ·D) and O(NP · log(NP )) respec-
tively. Therefore the time complexity for one gener-
ation is equal to O(NP · D) + O(NP · log(NP )) =
O(NP · D), since NP ≈ D. Considering the time
complexities of DMGSA and OABCDE, we can see
why DMGSA (and GSA) took a longer running time
than OABCDE in our GRN optimization in previous
subsection.

6. CONCLUSION

The gravitational coefficient G and the number
(K) of other best agents for calculating the gravi-
tational force have impacts on balancing exploration
and exploitation of GSA. The first experiment in this
work studies the performance effected from varying G
and K. The decay rate α of 7 for G is recommended
from this study. The second experiment evaluates the
performance of the proposed hybrid DMGSA algo-
rithm. The results confirm the performance achieved
from the proposed differential mutation with a high
value of G0 = 300 and the exponential decay of K
with β = 3. The proposed differential mutation oper-
ator provides a fast convergence and thus is controlled
with a new parameter CR. A high value of CR (like
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Fig.5: Convergence graphs of some CEC2013 functions.

Table 9: S-System for network model.

i α g1 g2 g3 g4 g5 β h1 h2 h3 h4 h5

1 5 1 -1 10 2
2 10 2 10 2
3 10 -1 10 -1 2
4 8 2 -1 10 2
5 10 2 10 2
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Table 10: Statistical results of GRN optimization.
Statistical rank using

Algorithm NP Mean S.D. Lowest Highest
Wilcoxon signed-rank test

DMGSA-85 40 0.077 0.026 0.065 0.167 1
OABCDE 40 0.085 0.008 0.071 0.100 1
OABCDE 80 0.089 0.009 0.076 0.107 1
DMGSA-85 80 0.094 0.056 0.065 0.290 1
DMGSA-15 40 0.183 0.059 0.100 0.386 5
DMGSA-15 80 0.269 0.051 0.165 0.393 5
GSA 40 0.799 0.783 0.074 2.130 7
GSA 80 0.929 0.426 0.117 1.661 7

Fig.6: Time series of GRN problem: actual (left) and reconstructed using DMGSA (right).

0.85) is recommended for unimodal functions while
a low value of CR (like 0.15) is for multimodal func-
tions or the functions with unknown modality. Lastly
DMGSA is applied to reconstruct a small-scale hypo-
thetical GRN of 5-gene, becoming an optimization
problem of 60 dimensions. The results confirm the
performance of DMGSA. Possible directions for fu-
ture works include testing with other differential mu-
tation operators and applying the algorithm to more
complex GRN problems and other real-world prob-
lems. In addition, it might be beneficial to com-
pare the results with the optimization tools such as
CPLEX or Gurobi.
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