
90 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.12, NO.2 November 2018

Scalable Hardware Mechanism for
Partitioned Circuits Operation

Yusuke Katoh1 , Hironari Yoshiuchi2 , Yoshio Murata3 ,
and Hironori Nakajo4

ABSTRACT

For designing hardware with a high-level synthe-
sis tool using a programming language such as C or
Java, its large size of logic circuit makes it difficult
to implement the design in a single FPGA. In such a
case, partitioning the logic circuit and implementing
in multiple FPGAs is a commonly used approach.

We propose the Scalable Hardware Mechanism,
which enables the operation of a partitioned circuit
to prevent the degradation of clock frequency by min-
imizing its dependence on the usage and the type
of FPGA. Our mechanism provides a reduced delay
by the collective signal transmission with the parti-
tioned AES code generation circuit and the character
string edit distance calculation circuit as partitioned
circuits. The collective signal transmission has at-
tained 1.27 times improvement in the speed for the
AES code generation circuit and 3.16 times improve-
ment for the character string edit distance calculation
circuit compared with the circuit by the conventional
method.

Keywords: Circuit operation, Partitioned circuit,
FPGA

1. INTRODUCTION

FPGAs have often been used in network devices,
embedded systems and as prototypes in ASIC de-
sign. In recent years, due to larger integration and
speedup of FPGAs, high-performance computing ex-
pects hardware acceleration with them. As increasing
scale of hardware application and utilizing high-level
synthesis (HLS) tools require a large amount of logic,
it is difficult to implement such logic into a single
FPGA. Therefore, in recent years there have been
attempting to partition a large-scale circuit into mul-
tiple sub-circuits and implement them into multiple
FPGAs.

Conventional operation for partitioned circuits
with multiple FPGAs has been conducted with syn-

Manuscript received on August 27, 2018 ; revised on Novem-
ber 2, 2018.
Final manuscript received on December 2, 2018.
1 TOSHIBA INFORMATION SYSTEMS (Japan) CORPO-

RATION, Japan
2 NTT Advanced Technology, Japan
3,4 Institute of Engineering, Tokyo University of Agricul-

ture and Technology, Koganei, Tokyo 184–8588, Japan Email:
nakajo@cc.tuat.ac.jp

chronization under a global clock, which is called
an emulation clock for circuit emulation. However,
partitioning a circuit may cause transmission delay
among the divided circuits due to a global clock,
which causes degradation of the operating frequency
of the system, thereby reducing the performance of
the whole system.

In this research, we introduce a new partitioned
circuit operation mechanism called Scalable Hard-
ware Mechanism, which corresponds to some kinds
of circuit operations as well as circuit emulation us-
ing multiple FPGAs.

In a Scalable Hardware Mechanism, a large circuit
is partitioned into a sending side and receiving one.
Packetized signal information is sent from a sending
side together to a receiving side to enhance opera-
tion speed in a whole circuit under a dedicated proto-
col. Since the protocol does not depend on a specific
communication interface, the operating circuit keeps
scalability as well as can be configured to a massive
system consisting of a large number of FPGAs.

Moreover, the method prevents degradation of the
circuit operating speed due to global synchronization
to improve the operation speed of the whole circuit.

Our Scalable Hardware Mechanism cannot be ap-
plied to all kinds of partitioned circuits. Applica-
ble circuits are limited to one-way signals between
the partitioned circuits because backward signal may
cause a change in the state of the previous-stage fi-
nite state machine. However, for partitioned circuits
connected with one-way signals, such as stream ap-
plication, the Scalable Hardware Mechanism can im-
prove the speed of operation of the partitioned cir-
cuits. As increased the number of ports to connect
FPGA boards, partitioned circuits can be configured
not only in a one-dimensional array but star or tree
topology in which the direction of signal is limited in
one-way.

2. RELATED WORKS

In implementing divided circuits into multiple FP-
GAs using two or more boards and synchronizing the
whole divided circuits, a global common clock, called
emulation clock, is often used. The period of this
emulation clock is generally estimated from the delay
time between the registers for all the signal wires. In
some research, for the large number of signal trans-
missions, high-speed serial communication, instead of

Scalable Hardware Mechanism for Partitioned Circuits Operation 91

bus connection, is sometimes used to overcome the
pin-neck of FPGAs. With the high-speed serial com-
munication, degradation of the emulation clock is also
avoided to secure the clock frequency of the whole cir-
cuit[3][4].

However, when an emulation clock is used, clock
frequency may degrade due to increased transmis-
sion delay as the number of ports in the FPGA is
increased.

Moreover, an emulation clock cycle needs to be cal-
culated in the worst case in which the largest trans-
mission delay is supposed in implementing circuits
into FPGAs in each design. Therefore transmission
method via an unstable transmission time such as
Ethernet is difficult to be used in such a emulation
clock based system. Some large-scale multi-FPGA
systems with a large amount number of high-end FP-
GAs adopt high-speed serial communication for high
performance computing[1]. Moreover, a large-scale
FPGA system which adopts 512 of low-end FPGAs,
Xilinx Spartan3, to build a huge systolic array has
been also implemented and evaluated with some prac-
tical applications[2].

A set of constraints during the partitioning task
and an iterative routing algorithm to obtain the best
multiplexing ratio for inter-FPGA signals have been
researched[5]. This research focuses on a method to
partition a circuit efficiently but our approach focuses
on the way to operate the partitioned circuits in high
speed.

3. SCALABLE HARDWARE MECHANISM

3.1 Concept of the Scalable Hardware Mech-
anism

Fig.1: Overall concept of Scalable Hardware Mech-
anism

In the Scalable Hardware Mechanism, a circuit is
partitioned and implemented into multiple FPGAs
with which multiple boards are connected via a net-
work to realize a virtual large-scale circuit as shown
in Fig.1. Our proposed method has the following ad-
vantages compared with the conventional method.

• Scalability: The conventional method is con-

ducted in an operation environment with the speci-
fied FPGA cards in the partitioned circuits. However,
the Scalable Hardware Mechanism does not depend
on the board configurations or on the type or grade of
the FPGA. In our system, FPGA boards can be con-
nected via different network interfaces such as PCI
Express, Gigabit Ethernet or RocketIO to make the
partitioned circuits more scalable.
• Asynchronicity among partitioned circuits:
To operate the partitioned circuits with a local clock,
conventionally all circuits should be synchronized
with the clock.
Also, Imperial College London developed CUBE,
which has 64 FPGA devices on a single board and 512
FPGA devices, as a platform providing simple inter-
face and streamline processing power. While CUBE
is dedicated to stream applications with connecting
multiple FPGA boards in a single-dimensional array,
a clock signal is supplied from the FPGA in the pre-
vious stage board in the array.
In the Scalable Hardware Mechanism, since each
FPGA is operated under synchronization of the lo-
cal clock, each partitioned circuit can be operated
asynchronously in higher speed. Therefore, the mech-
anism restrains degradation of clock frequency of a
circuit and maximizes the operating speed with the
Hardware Expansion Protocol.

3.2 Hardware Expansion Protocol

Fig.2: Processing flow of signal information

As shown in Fig.2, a protocol called the Hardware
Expansion Protocol realizes an efficient operation
of the partitioned circuits for a Scalable Hardware
Mechanism using the Transmission Control Method,
which makes the transmission independent of the
communication interface.

In a Hardware Expansion Protocol, after a bun-
dle of signal information in tens to hundreds of clock
cycles are stored into memory, the bundled informa-
tion is sent to the next FPGA with collective signal
transmission. With all these mechanisms, each parti-
tioned circuit is able to operate in each FPGA inde-
pendent of the size of the targeted circuit, the type
of the board or an FPGA, and the distance between

92 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.12, NO.2 November 2018

the boards.

3.2.1 Signal Storing and Regenerating Mechanisms

Fig.3: Latency hiding with collective transmission
of bundle of signal information

In execution control of the conventional parti-
tioned circuits, in order for all partitioned circuits to
synchronize, all the signal information for one clock
should be outputted from each partitioned circuit by
the time of the start of the following clock to keep
coordination among all the circuits. Therefore, it is
necessary to include propagation delay of circuits in
both sending and receiving sides as well as communi-
cation delay between boards within a single cycle of
the emulation clock.

On the other hand, after signal information of tens
or hundreds of clock cycles outputted from the par-
titioned circuit is stored into memory, the bundle of
signal information is transmitted to the next circuit.
Then, after the sent signal information is received by
the receiving circuit, the signals are regenerated and
operated one by one clock cycle by the circuit.

Since the operation clock in each FPGA is given
as the original clock of the FPGA, continuous com-
munication between partitioned circuits can be over-
lapped with each operation in each circuit. This ef-
fectively overcomes the transmission delay between
the circuits.

Moreover, since the proposed mechanism can work
independently on different network interfaces or com-
munication mediums, maximum payloads of various
transmission systems can be utilized, which prevents
the throughput degradation.

Signal Storing and Regenerating Mechanisms are
realized by implementing Signal Storing (SSM) and
Signal Regenerating Module (SRM) respectively. An
SSM controls a circuit on the sending side and a buffer
memory that stores signal information for collective
transmission. It always observes the buffer memory
status, and prevents it from overflowing. If the buffer
memory become almost full, the SSM stops supplying
the clock signal to the circuit on the sending side.
After more room is available in the buffer, the SSM

restarts supplying the clock to store the bundle of
signal information.

The SRM controls circuits on the receiving side
as well, and the buffer memory that stores sent sig-
nal information from the source circuit. In the buffer
control, when the SSM checks the status of the re-
ceiving buffer which is empty or not, it sends signal
information one by one clock cycle from the buffer
memory to the partitioned circuit in the case that
there exists signal information in the buffer. When
the buffer memory is empty, the SRM stop supplying
clock signal to the circuit in the receiving side. After
the signal information will be stored into the buffer,
the SRM restart supplying the clock to operate the
circuit in the receiving side.

3.2.2 Transmission Control

Fig.4: Dataflow between partitioned circuits

By packetizing signal information, independent
communication on a communication medium among
partitioned circuits can be realized. However, in or-
der to establish a communication path between the
boards in which partitioned circuits are implemented,
the system requires another communication control
between FPGAs.

The proposed system adopts a control packet,
which checks the status of the buffer memory for com-
munication and a data packet that includes the out-
put signal information on a partitioned circuit.

To establish communication, the SSM on the send-
ing side sends a control packet including a Request
signal. If the receiving buffer is not almost full, and
can receive a packet, the SRM on the receiving side
sends back a control packet including an Ack signal to
establish communication. Otherwise the SRM sends
a Nack signal to the sending side to postpone send-
ing. After establishing the communication, when the
sending buffer becomes almost full, the SRM sends a
packet including an Xoff signal to stop sending pack-
ets. Then the buffer reserves room for receiving pack-
ets later, and the SRM sends an Xon signal to the
sending side to restart sending the packet.

Using the Ack and the Nack signals, which are

Scalable Hardware Mechanism for Partitioned Circuits Operation 93

included in the control packet, we can realize com-
munication establishment, and the Xon / Xoff signal
can realize the flow of control between partitioned cir-
cuits. The data flow coupling all the mechanisms of
the proposed architecture is shown in Fig.4.

3.3 Implementing Partitioned Circuits

A designed large-scaled Verilog HDL source code is
transformed into an abstract syntax tree using Pyver-
ilog[6] which is an analyzing tool for Verilog HDL. A
transformed syntax tree is input to a developed cir-
cuit partitioning tool to generate multiple partitioned
Verilog HDL source codes.

As mentioned before, in a Scalable Hardware
Mechanism, a direction of signals is limited to a sin-
gle way. Thus, in order for partitioned circuits to
be operated in the Scalable Hardware Mechanism, a
direction of signals between the partitioned circuits
should be limited to a single way.

4. EVALUATION

4.1 Evaluation Environment

Table 1: Implementation and evaluation environ-
ment

Used HDL Verilog HDL
Evaluated device Virtex-5 XC5VLX330-1FF1760
Design tool ISE Design Suite 14.6
RTL simulation tool ISim 14.6

The implementation and evaluation environment
is shown in Table 1.

4. 2 Target Application Circuit

4.2.1 AES Code Generation Circuit

AES is a common key encryption system which
divides a plain sentence into 128-bit blocks for en-
cryption using the encryption key of the key length
of 128,192,256 bits. Encryption applies the following
operations on the input data.
(1) SubBytes: Change the data of one Byte into the

value of another Byte using the character conver-
sion table.

(2) ShiftRows: Replace the position of data per Byte.
(3) MixColomns: Change the data of 4Byte by a bit

operation.
(4) AddRoundKey: Apply an XOR operation with a

round key.
Steps from (1) to (4) are repeated in the specified

round number to encrypt the target. In the repeat,
output of the step (4) is input to the step (1).

The AES code generation circuit, which is used for
evaluation, treats the key length of 128 bits to gen-
erate an AES code in the ECB mode. An AES code
generation circuit can be divided into a key genera-
tion circuit and a code generation circuit.

In a key generation circuit, after ten round keys
are generated from a single key, they are transmitted
to a code generation circuit. In a code generation
circuit, the information on the round key transmit-
ted from the key generation circuit is used to execute
scrambling of a plain sentence. Since a key generation
circuit transmits information of a 128-bit round key,
a 1-bit round key output flag and a 1-bit reset signal,
altogether 130-bits signal information is transmitted
between the partitioned circuits.

4.2.2 Character String Edit Distance Calculation
Circuit

Fig.5: Concept of character string edit distance cal-
culation circuit

A character-string edit-distance calculation circuit
computes the degree of similarity of a character string
by measuring the edit distance (Loewenstein dis-
tance) of two-character strings. Edit distance is the
number of deletions, insertions and substitutions of
characters needed to change a given character string
to the targeted character string. A low Loewenstein
distance means highly similar character strings.

The calculation algorithm of the Loewenstein dis-
tance is as follows. We let the number of characters of
the character string A and string B be lenA and lenB
with the number of characters as i(1 ≤ i ≤ lenA) and
j(1 ≤ j ≤ lenB) respectively. Then the score table
ST for calculating the Loewenstein distance is pre-
pared as (lenA+1)× (lenB+1). Equation 1 is used
to calculate the value assigned to the score table.

min

ST (i− 1, j) + 1

ST (i, j − 1) + 1

ST (i− 1, j − 1) + a

(1)

(1) Zero is substituted into ST(0, 0).
(2) i and j are substituted into ST(i, 0) and ST(0, j)

respectively.
(3) The i-th character of the string A and the j-th

character of the string B is compared. If they
are equal, the temporary variable a is set to 0,
otherwise it is set to 1.

(4) Calculated value by expression 1 is assigned to
ST(i, j).

94 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.12, NO.2 November 2018

First, steps (1) and (2) are executed to initialize
the score table. Then, steps (3) and (4) are exe-
cuted repeatedly until the conditions i = lenA and
j = lenB become true. The value of ST(lenA, lenB)
is finally calculated as the Loewenstein distance. We
have implemented and evaluated a circuit which com-
pares two 40-character strings based on the circuit.
The comparison circuit of 40 characters consists of
40 × 40 two dimensional array of a processing ele-
ment (PE), which performs character-wise compar-
isons. One PE executes processing shown in equation
1. Therefore, the calculation of the degree of similar-
ity of 40 characters is outputted in 80-cycle latencies
in the unpartitioned original circuit.

The partitioned circuits in this evaluation is gener-
ated by dividing the original circuit at the point be-
tween the 20th and the 21th rows. The width between
the divided circuits becomes 1,872 bits as shown in
Table 2. Output from each PE uses 42 bits and each
character has 8 bits. In the evaluation circuit, 50 bits
for control are padded to the 1,872 bits, thus a total
of 1,922 bits are transmitted between divided circuits.

Table 2: The number of transmitted bit between
divided circuits

Item The number of bit [bits]
Output bits from PE 42× 40PE = 1680
Divided character string 2× 20 = 160
(20character)
Output 32
Total 1872bit

4.3 Evaluation Results

For evaluation, we have calculated emulation clock
frequency in a conventional method and delay in col-
lective signal transmission of our proposed method
in section 4.3.1 and section 4.3.2 respectively. The
operation time is measured by RTL simulation with
these parameters.

A synchronous circuit with an emulation clock is
used as the circuit of the conventional method for
comparison. The details of the circuits of the con-
ventional and proposed methods are shown below.

4.3.1 Circuit in the Conventional Method

Operation of the divided circuits of the conven-
tional method is performed by an emulation clock.
Since a single cycle of this emulation clock must in-
clude critical path delay and the transmission delay
between circuits , the cycle of this clock becomes
longer than the original clock cycle of an FPGA. This
cycle Temu is estimated by equation 2 given in [4].
This equation is estimated with the GTX transceiver,
which is a communication module from Xilinx.

Temu = Tcp + Tgtx + Td + Tf ×N (2)

• Temu: Emulation cycle time [ns]
• Tcp: Critical path delay [ns]

• Tgtx: GTX Transceiver latency [ns]
• Td: Latency of received data to output [ns]
• Tf : Transmission time of a frame data [ns]
• N : Count of transmission of frame data

The parameters in this evaluation are set as fol-
lows. The clock frequency of the FPGA is required
to be 100 MHz. As Tcp is required for Td, because of
the synchronization of the base clock and the emula-
tion clock, it becomes the delay of the half cycle of the
base clock: Td is set to be half of 10 ns = 5 ns. Tgtx
is set to be 49 ns as shown in [4]. When the transmis-
sion rate of a GTX transceiver is 5 Gbps, Tf is set to
4ns; and when the transmission rate is 10 Gbps Tf ,
it is set to 2ns Moreover, 20-bits signal information
can be transmitted for a single frame. The signal in-
formation transmitted in one clock cycle is 140-bits:
130 bits padded with 10 bits in an AES code circuit.
In a character string edit distance calculation circuit,
a total of 1,880-bits are transmitted, which includes
eight padded bits to the 1,872 information bits.

Based on the above assumption, Temu is set to 92
[ns] when the transmission rate is 5 Gbps, correspond-
ing to the frequency of 10.869 MHz in the AES code
generation circuit. When a transmission rate is as-
sumed to be 10 Gbps, Temu would be set to 78 [ns],
corresponding to the frequency of 12.829 MHz.

In the character string edit distance calculation cir-
cuit, when the transmission rate is 5 Gbps, Temu is as-
sumed to be 440 [ns], corresponding to the frequency
of about 2.272 MHz. When the transmission rate is
assumed to be 10 Gbps, Temu is 252 [ns], correspond-
ing to the frequency of about 3.968 MHz. By setting
the clock at the frequency of operation of the unpar-
titioned original circuit, calculation of the processing
time in the conventional method is attained.

4.3.2 Circuit in the Proposed Method

In the evaluation of the proposed method, the cir-
cuit of the Hardware Expansion Protocol as shown
in figure 4 is added to the divided circuits. However,
in order for this evaluation to estimate reduction of
the transmission delay by collective signal transmis-
sion, compression / extension circuits are not coupled
into the evaluation circuit. Moreover, since the two
divided circuits are used for evaluation, transmission
control circuit that performs communication control
with more than three FPGAs is not coupled. FIFO
is implemented as a send and receive buffer. The bit
width which can be written in a single clock cycle
to the FIFO is 130 bits for the AES code generation
circuit and 1,922 bits for the character string edit
distance calculation circuit with 1024 depth in the
FIFO.

Additionally, a pseudo transmission circuit is in-
serted instead of a sending and a receiving module.
After the pseudo transmission circuit receives output
from the FIFO on the sending side, it holds the sig-
nal information until the specified time transmission

Scalable Hardware Mechanism for Partitioned Circuits Operation 95

delay time elapses. The transmission delay Tdelay is
specified in the equation 3.

Tdelay = Tgtx + Tbuf + (Cbit + Pbit)×M/R (3)

• Tdelay: Transmission delay of collective transmis-
sion [ns]
• Tgtx: GTX Transceiver latency [ns]
• Tbuf : Transmission delay to check a receiving buffer
[ns]
• Cbit: The number of bits from partitioned circuit
per clock [bit]
• Pbit: The number of padding corresponding to a
frame [bit]
• M : Clock count to store signal information
• R: Transmission rate [bps]

In order to correspond to the conditions of the con-
ventional method, the clock frequency of the FPGA
is set to 100 MHz. Moreover, Tgtx is assumed to be
49 ns. Tbuf is calculated by Tgtx+ receiving side crit-
ical path delay +1 frame transfer time. Since critical
path delay is to be 10 ns from the 100 MHz clock fre-
quency of the FPGA. The transfer time of one frame
is set to 4 ns when transmission rates are 5 Gbps,
and it is set to 2 ns for the transmission rate of 10
Gbps. Signal information per clock Cbit is 130 bits
in an AES code generation circuit, and is 1,922 bits
in a character string edit distance calculation circuit.
Since one frame is set to 20 bits, Pbit is to be 10 bits
in an AES code generation circuit, and is set to be
18 bits in a character string edit distance calculation
circuit. Moreover, M is set to 256 in this evaluation.
Consequently, (Cbit + Pbit) × M is the total number
of bits to be transmitted together. When the trans-
mission rate is 5 Gbps, R becomes 5 × 109, and when
the transmission rate is 10 Gbps, R becomes 10×109.

Based on the above assumption, when the trans-
mission rate is 5 Gbps, Tdelay is set to 7,275 [ns], and
when the transmission rate is 10 Gbps, Tdelay be-
comes 3,689 [ns] in the AES code generation circuit.

In the character string edit distance calculation cir-
cuit, when the transmission rate is 5 Gbps, Tdelay is
set to 99,377 [ns], and when the transmission rate is
10 Gbps, Tdelay becomes 49,713 [ns].

4.3.3 Evaluation of Logic Size

The evaluation of logic size is shown in Table 3 and
Table 4.

From the result, increasing ratio of LUT and reg-
isters is no so significant when the system is coupled
with the proposed mechanism. However, the num-
ber of BlockRAM increases significantly with the pro-
posed mechanism because the signal information is
not compressed yet in this evaluation. An efficient
compression algorithm is necessary for the signal in-
formation against this problem.

4.3.4 Evaluation of operation time

For the evaluation of operation time, the specific
plain sentences and encryption key are given to be
performed 10,000 encryption in the AES code gen-
eration circuit. In the character string edit distance
calculation circuit, the specific input strings are given
to be calculated 10,000 times to determine the sim-
ilarity of character strings. We have measured the
time taken to complete these calculations in each cir-
cuit. The evaluation results of the operation time
are shown in Figures 6 and 8. Moreover, the stalling
times of the partitioned circuit in operating time are
shown in Fig.7 and Fig.9 for each circuit.

Fig.6: Operation time (AES code generation circuit)

Fig.7: Stalling time ratio (AES code generation)

Fig.8: Operation time (character string edit dis-
tance calculation circuit)

96 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.12, NO.2 November 2018

Table 3: Logic size with an AES code generation circuit
Sending side Receiving side

Proposal Unpartitioned Proposal Unpartitioned The used number
LUT 703(0.3%) 647(0.3%) 1070(0.5%) 1008(0.5%) 207360
Registers 656(0.3%) 457(0.2%) 311(0.1%) 141(0.1%) 207360
BlockRAM 4(1.4%) 0(0%) 4(1.4%) 0(0%) 288

Table 4: Logic size with a character string edit distance calculation circuit
Sending side Receiving side

Proposal Unpartitioned Proposal Unpartitioned The used number
LUT 143240(69.1%) 143153(69%) 170007(82%) 166009(80.1%) 207360
Registers 50926(24.6%) 48848(23.6%) 67010(32.3%) 51760(25%) 207360
BlockRAM 72(25%) 18(6.3%) 54(18.8%) 0(0%) 288

In the case of the AES code generation circuit, the
proposed method improves by 2.38 times compared
to the conventional method when the transmission
rate is 5 Gbps, and by 3.16 times for 10 Gbps. In
the case of the character string edit distance calcu-
lation circuit, when the transmission rate is 5 Gbps,
the proposed system is faster by 1.11 times; and, for
the case of 10 Gbps, 1.27 times. In both instances
of the transmission rate between partitioned circuits
of 5 Gbps or 10 Gbps, in execution time, improve-
ment from the conventional method technique can be
realized.

This is because the latency in the conventional cir-
cuit is concealed by transmitting the signal informa-
tion for 256 clocks continuously. The latencies of the
GTX transceiver are largely reduced compared to the
circuit of the conventional method. Thus, by trans-
mitting signal information collectively, communica-
tion time can be overlapped with the operation of
the circuit. In this way, our proposed method is ad-
vantageous compared to the emulation clock method.

In the signal storing and the signal regenerating
module, latency is implicit in the transmission with
storing the signal information to a buffer in paral-
lel with the transmitting signal information. How-
ever, in the evaluation of the character string edit dis-
tance calculation circuit, this effect has been reduced
greatly. From Fig.9, a significantly long stalling time

Fig.9: Stalling time ratio (character string edit dis-
tance calculation)

is found in both the sending and the receiving side.
Therefore, almost all the time of the whole operation
time is consumed in transmitting signal information.
The succeeding transmission should wait for the time
when the current collective signal transmission is fin-
ished. When the current transmission is finished, the
next transmission is started immediately. It seems to
reduce the effect of the transmission latency implicit
in the collective signal transmission.

5. CONCLUSION

In this paper, we have proposed a Scalable Hard-
ware Mechanism in which the collective signal trans-
mission is performed by Signal Storing and Signal Re-
generating Modules. In the case of the AES code gen-
eration, speedup gained by the proposed method is up
to 3.16 times faster than the emulation clock synchro-
nization method. In the case of the character string
edit distance calculation, a maximum improvement
of 1.27 was achieved. In the future, we plan to im-
plement an efficient compression algorithm to reduce
the time to store and transmit signal information be-
tween the partitioned circuits.

ACKNOWLEDGMENT

This work was partially supported by JSPS Grant-
in-Aid for Scientic Research (C) Number 16K00078.

References

[1] H. Morisita, K. Inakagata, Y. Osana, N. Fujita
and H. Amano, “Implementation and evaluation
of an arithmetic pipeline on FLOPS-2D: multi-
FPGA system,” ACM SIGARCH Computer Ar-
chitecture News, Vol.38, No.4, pp.8–13, Septem-
ber 2010.

[2] O. Mencer, K. H. Tsoi, S. Craimer, T. Todman,
W. Luk, M. Y. Wong, and P. H. W. Leong,
“Cube: A 512-fpga cluster In Programmable
Logic,” 2009 5th Southern Conference on Pro-
grammable Logic (SPL), Sao Carlos, pp.51–57,
2009.

Scalable Hardware Mechanism for Partitioned Circuits Operation 97

[3] K.Takahashi, R.Saeki, M.Kuga and T.Sueyoshi,
“Circuit Partitioning Techniques for FPGA-
based ASIC Emulator via High-speed Serial
Communication,” Proc. 2011 Joint Confer-
ence of Electrical and Electronics Engineers in
Kyusyu, 11–1P–03, pp.249-250, 2011.

[4] K.Takahashi, M.Amagasaki, M.Kuga, M.Iida,
T.Sueyoshi, “Circuit Partitioning Methods for
FPGA-based ASIC Emulator using High-speed
Serial Wires,” Proc. The 17th Workshop on Syn-
thesis And System Integration of Mixed Infor-
mation Technologies(SASIMI2012), pp.317–318,
2012.

[5] M. Turki, Z. Marrakchi, H. Mehrez and M. Abid,
“Frequency Optimization Objective during Sys-
tem Prototyping on Multi-FPGA Platform,” In-
ternational Journal of Reconfigurable Comput-
ing, Volume 2013, Article ID 853510, 2013.

[6] Shinya Takamaeda-Yamazaki: Pyverilog: “A
Python-based Hardware Design Processing
Toolkit for Verilog HDL,” 11th International
Symposium on Applied Reconfigurable Com-
puting (ARC 2015) (Poster), Lecture Notes in
Computer Science, Vol.9040/2015, pp.451–460,
2015.

Yusuke Katoh received the BE and
ME degrees from Tokyo University of
Agriculture and Technology Japan, in
2013 and 2015, respectively. He is cur-
rently an employee of Toshiba Informa-
tion Systems Corporation.

Hironari Yoshiuchi received the BE
and ME degrees from Tokyo University
of Agriculture and Technology Japan in
2014 and 2016, respectively. He is cur-
rently an employee of NTT Advanced
Technology Corporation, Japan.

Yoshio Murata received the BE de-
grees from Tokyo University of Agri-
culture and Technology Japan in 2016.
He is currently a student of Graduate
School of Tokyo University of Agricul-
ture and Technology. His research in-
terests include circuit partitioning and
distributed debug environment.

Hironori Nakajo received the B.E.
and M.E. degree in Electrical Engineer-
ing from Kobe University in 1985 and
1987, respectively. He visited Center for
Supercomputing Research and Develop-
ment (CSRD) of the University of Illi-
nois at Urbana-Champaign as a Visit-
ing Research Assistant Professor from
1998 to 1999. He is an Associate Pro-
fessor at Institute of Engineering, Grad-
uate School Tokyo University of Agri-

culture and Technology since 1999. His research interests are
computer architecture, parallel processing, cluster computing
and reconfigurable computing. He is a member of IPSJ, IEEE
and ACM. Ph.D (Doctor of Engineering).

