SSD Bandwidth Distributing I/O Scheduler Considering Garbage Collection 1

SSD Bandwidth Distributing I/O Scheduler
Considering Garbage Collection

Jung Kyu Park!, Member and Jaeho Kim?

ABSTRACT

There were scheduler studies for QoS(Quality of
Service) or SLA(Service Level Agreement) of hard
disks. The use of SSDs as storage has been increasing
dramatically in recent systems due to their fast per-
formance and low power usage. However, the studies
to guarantee the SLA are based on the hard disk and
do not consider SSD which is a flash storage device.
In the SSD, GC(Garbae Collection) process copies
data to an empty block and the corresponding block is
removed by the GC. This causes SSD performance to
degrade in a virtualized environment with many I/Os.
We considered the Linux scheduler to take SSD char-
acteristics into consideration and to improve I/O per-
formance. In this paper, we propose a MTS-CFQ I/0
scheduler that is implemented by modifying the exist-
ing Linux CFQ I/O scheduler. Our proposed method
controls the time slice based on the I/O bandwidth for
the current storage device. Real workload-driven sim-
ulation based experimental results have shown that
MTS-CFQ can improve performance by up to 20%
with an average of 5%, compared with the traditional
CFQ I/0 for the four workload considered.

Keywords: I/0O scheduler, CQF, SSD, SLA

1. INTRODUCTION

Solid State Drive(SSD), which is a storage device
based on flash memory, has been rapidly increasing
in usage as a storage device of computer system due
to its fast performance and low power consumption.
As the degree of integration of SSD increases and the
price drops, the use of SSD is also emerging in vir-
tualization systems that are widely used in servers.
However, most recent operating system and system
software have been developed assuming that the hard
disk is used as a storage device for a long period of
time [1] [2].

SSDs are used extensively in general systems, but
they can perform better in server environments. If

Manuscript received on August 14, 2017 ; revised on Decem-
ber 15, 2017.

Final manuscript received on January 29, 2018.

I The author is with Department of Computer Software
Engineering, Changshin University, Korea., E-mail: smartjk-
park@gmail.com

2 The author is with Department of Electrical and Computer
Engineering at Virginia Polytechnic Institute and State Uni-
versity, USA., E-mail: kjhnet@gmail.com

you plug in the slowest hardware on the server com-
puter system can pick the hard disk storage device.
Therefore, if you replace the hard disk with the SSD,
you can expect to improve the performance of the
server. Since the price of SSD is higher than that of
hard disk, it is possible to improve the server perfor-
mance by adding a little extra cost if SSD is used as
a cache in the upper layer of the hard disk instead of
replacing all the hard disks.

Among the most recent server systems, cloud-
based server systems and virtual environment server
systems are the most important issues. Since multiple
virtual machines can be operated on a single physical
system, system resources can be efficiently used by
minimizing the amount of resources remaining while
sharing hardware resources. If SSD is used in the vir-
tualization server environment part, it is necessary to
share SSDs of various virtual machines because each
virtual machine must efficiently use resources.

In a server system in a virtualized environment, it
is easy to allocate CPU and memory resources com-
pared to other resources. However, resource alloca-
tion of storage devices is one of the relatively diffi-
cult research areas [3]. This is particularly evident in
terms of service level agreements (SLAs). Unlike a
hard disk that reads and writes data on the basis of
the physical characteristics of the hard disk (rotation
delay time, seek time, and data transfer time), the
SSD can read and write data electronically without
any physical work. The biggest difference between a
hard disk and an SSD is the garbage collection re-
sulting from the physical characteristics of the SSD
[4] [5] [6]-

The hard disk can physically erase data because
existing data can be overwritten with new data at
the location. However, in the case of SSD, the semi-
conductor chip is composed of blocks, blocks are com-
posed of pages, data can be read and written in units
of pages, and block units can be deleted. Therefore,
when deleting some data, it is often indicated that
the data is not valid through the Flash Translation
Layer (FTL), and the data is not actually deleted.
As the writing and erasing are repeated, an invalid
page is generated in the flash. If there is a lot of in-
valid pages and the free space in the flash of the SSD
becomes insufficient, delete the invalid pages in the
block and copy the valid pages to the other blocks
and delete the existing blocks to secure the pages to
be written. This process is called garbage collection.

2 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.12, NO.1 May 2018

O Sequential Write T Random Write
100000 ml M M m m B mrl
2 80000
o
M
Z 60000
=
2
S 40000
<
=}
20000
OswsIZK 512K 512K 51K SIK 512K SI2K 512K
RW4K 8K 16K 32K 64K 128K 256K 512K

Fig.1:
lection

Write performance test without garbage col-

If there is garbage collection in a single SSD by
multiple processes due to garbage collection, the write
bandwidth of each process may differ. Fig.1 and Fig.2
show the experimental results of how two virtual ma-
chines run in a KVM hypervisor virtualization envi-
ronment and how the write performance of each vir-
tual machine changes due to garbage collection. In
the first virtual machine, the block size is fixed at
512KB and 1GB of data is sequentially written. In
the second virtual machine, the block size is gradually
increased from 4KB to 512KB, and the bandwidth
is investigated while performing 1GB random write.
Fig.1 shows an SSD with no garbage collection, and
Fig.2 shows an SSD with garbage collection.

In Fig. 1, we can see that 512 KB of sequential
writes in the write bandwidth are not affected as the
block size of the random write increases from 4 KB
to 512 KB. That is, when garbage collection does not
occur, it does not affect the writing of each virtual
machine.

However, in the case of garbage collection in Fig.
2, the bandwidth of sequential writes decreases as the
block size of random write increases. In other words,
it can be seen that when two virtual machines write
at the same time when garbage collection occurs, the
bandwidth of the sequential write can be reduced due
to the garbage collection caused by the random write.

This garbage collection can adversely affect the vir-
tual environment server using SSD. When garbage
collection occurs when multiple virtual servers access
a single SSD at the same time, the ratio of write band-
width when they do not occur varies so that proper
SLA based on the ratio can not be guaranteed. For
this reason, considering the characteristics of garbage
collection of SSD, there is a need for a solution that
guarantees SLA when garbage collection occurs and
when garbage collection does not happen.

In this paper, we utilize Manager of Time Slice-
CFQ (MTS-CFQ), which is an I/O scheduler which
is a modification of CFQ scheduler which is a Linux
basic scheduler considering the characteristics of SSD
[7]. The MTS-CFQ determines whether the band-
width is distributed as intended by the current man-

O Sequential Write @ Random Write

25000 [
220000
£15000
=]
£
S 10000
<
=)

5000 H }

OSW§2K 512K 512K 512K 512K 512K 512K 512K

RW4K 8K 16K 32K 64K 128K 256K S12K

Fig.2: Write performance test with garbage collec-
tion

ager referring to the I/O bandwidth, and then the
bandwidth is distributed by the ratio set by the time
slice adjustment.

2. STATE OF THE ART

There have been studies on QoS(Quality of Ser-
vice) or SLA(Service Level Agreement) for hard disks
or SSDs and related schedulers. However, studies
to guarantee SLA were based on hard disk without
considering flash-based SSD. The Studies considering
the characteristics of SSDs that perform I/O opera-
tions without mechanical characteristics have studied
scheduling techniques to guarantee fairness of 1/0,
but have not considered SLA aspects. Also, existing
studies have considered QoS and SLA, but often do
not consider garbage collection, which is an impor-
tant characteristic of SSD.

PARDA algorithm and VM-PSQ algorithm have
been proposed a new scheduling scheme for dis-
tributing I/O resources in virtualized environments
or distributed systems [6] [8]. The PARDA improves
I/O bandwidth distribution performance and fair-
ness by measuring I/0 latency in a distributed stor-
age environment and adjusting the length of the I/O
queue based on this information. VM-PSQ improves
I/0 bandwidth allocation performance over existing
schedulers by considering I/O time slices and schedul-
ing tokens simultaneously in a virtualized environ-
ment. However, since the storage medium is limited
to the existing hard disk, the characteristics of the
SSD are not properly reflected.

FIOS algorithm and FlashFQ algorithm have been
proposed a new scheduler for fair I/O resource alloca-
tion considering the characteristics of flash-based SSD
storage [10] [11]. FIOS improves efficiency and I/0
performance for fair I/O distribution by implement-
ing a scheduler that understands the nature of SSD’s
read faster than write and reflects latency for reads
and writes. FlashF(Q improves the I/O time slice dis-
tribution method when several threads perform I / O
considering the characteristics of SSD. This technique
reduces I/0 response time and improves I/O fairness

SSD Bandwidth Distributing I/O Scheduler Considering Garbage Collection 3

Process Process Process

kernel

VFS / Filesystem layer

Block layer

CQF
1/0 scheduler

Device driver

Fig.3: CFQ I/0 scheduler in Linuz

compared to existing schedulers. However, the algo-
rithms did not consider the SLAs and the garbage
collection characteristics of SSDs.

The CFQ (Completely Fair Queuing) I/O sched-
uler has been included in the Linux kernel since 2003.
CFQ is basically based on time slice rather than based
on I/0 requests. Fig. 3 shows the Linux CFQ I/O
scheduler. CFQ is an I/O scheduler that is useful
when processes have many I/0 requests because they
have I/O wait queues per process. CFQ is designed to
maintain fair I/O fairness by fairly adjusting the time
slice of each I/O request when multiple I/O requests
occur simultaneously on a disk device by multiple pro-
cesses. It is also possible for CFQ to assign fair I/O
distribution and priority for I/O to processes. And
I/0 bandwidth ratio can be adjusted by using time
slice. Using the KVM method, each virtual machine
is treated as a separate process and is recognized by
the I/O scheduler, so allocating a weight for I/O to
this process is equivalent to distributing I/O band-
width per virtual machine.

3. MTS-CFQ ALGORITHM

The MTS-CFQ proposed in this paper is imple-
mented by adding MoTS (Manger of Time Slice) to
manage the time slice part in the CFQ 1/O scheduler
of existing Linux. Fig. 4 shows the MoTS operating
inside the CQF.

When a user weights a virtual machine for band-
width allocation, CFQ creates and activates an MoTS
thread. MoT'S operates in a device-independent man-
ner. MoTS is device independent. If you have one
hard disk and one SSD shared by multiple virtual ma-
chines, CFQ creates two threads, one for the MoDT
for the hard disk and one for the SSD. That is, it is
designed to control the time slice by creating a thread
for each storage device. Therefore, even if the virtual
machine assigns different weights to each storage de-
vice, it can control the time slice independently of the

Virtual Virtual vee | Virtual
Machine 1 || Machine 2 Machine n
+ I S R

L

Virtual Virtual
Machine Machine

A B

Frontend Frontend
Driver Driver

1/0 Scheduler Layer

MTS-CFQ

Block Device Backend
Driver Layer Driver
2N S
H
H

Block Device]

Fig.5: Operating Environment of MTS-CFQ

device.

MTS-CFQ adjusts the time slice based on the I/O
bandwidth for the current device. So when multiple
virtual machines on a disk are performing I/O at the
same time, they must be able to collect bandwidth for
the respective storage device of the virtual machine.

In this paper, we utilize the iostat which is linux
command for system monitoring to measure the de-
tailed I/O bandwidth information of storage devices
so that MoTS can collect bandwidth [12]. Fig. 5
shows the MTS-CFQ operating environment.

3.1 Implementation

Fig. 6 shows the algorithm behavior of MTS-CQF.
When the weight of I/O bandwidth is given to the
CFQ by the virtual machine in the storage device of
the virtual machine, the MoTS thread is operated.
The MoTS thread collects bandwidth every 1 second
for each virtual machine through iostat to check that
the bandwidth is distributed as much as the user-
specified weight. Based on this, the remaining virtual
machines except TVM (Tiny VM) Remaining VM
I/O time slice. When distributing the bandwidth to
two or more virtual machines, the time slice of RVM
is adjusted based on TVM without adjusting the I/O
time slice of TVM having the least weight.

MTS-CQF refers to the amount of time that the
MoTS thread has been running or the bandwidth win-
dow (BW) seconds, and adjusts the I/O time slice

4 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.12, NO.1 May 2018

TVM : Tiny VM that has least weight of VM
RVM : Remaining VMs
BW : bandwidth windows
BWT : Mean bandwidth of TVM
BWR : Mean bandwidth of RVM
TSOVM : Time Slice of OVM
s=0
while(1){
IP = weight of RVM / weight of TV M
s+ +
if (time > bw)
BWR = (}>"_gw_, VMI_ bandwitdth)/ BW
BWT = (30 gw_, VMS bandwitdth)/BW

F = IP
BWR/BWT
By = {(Cbwor o)W 5 F
TSOVM+ = (izzZ—Bwq FS) /W
else

BWR = (3] VMI_bandwitdth)/s
BWT = (3] VMS _bandwitdth)/s

_ P
F= BWR/BWT
Fs, =

(i bwo Foo) /W F
TSOVMx= (31 F) /s

endif

sleep(1)

Fig.6: Algorithm of MTS-CFQ

based on the bandwidth value of the most recent BW
seconds of the virtual machines after BW seconds.
In this paper, the bandwidth allocation performance
is experimented by changing the BW value as shown
in Table 1. From the experimental results, it can be
seen that the bandwidth distribution performance is
the best when the BW wvalue is 10. If the time to
reference the bandwidth is too small, the deviation of
the time slice adjustment of the workload where the
value of the bandwidth changes a lot every second
becomes large. On the other hand, if the bandwidth
reference time is too large, the effect of the recent
bandwidth is reflected too little, and the time slice
adjustment is not accurate and the bandwidth distri-
bution performance is degraded. For this reason, we
used 10 seconds as the BW value in this paper.

Correction factor F' (Factor) is calculated by the
ratio of IP (Ideal Proportionality) set by the user in
advance to BandWidth of RVM (BWR) and Band-
width of TVM (BWT). It can be obtained by dividing
it into divided values. As a practical example, assume
that we have assigned weights of 1 and 10 to both vir-
tual machines VM1 and VM2, respectively. However,
if the average value of the bandwidth in the last 10
seconds is 1 to 5, the F value becomes 2. In other
words, by doubling the size of the VM2 time slice,
it is expected that the bandwidth is distributed by 1

Table 1: BW wvalue per bandwidth distribution ratio

VM1 [VM2 | VM3 | VM4
weight
BW 10 7 4 1
5 8.3 7.3 4.4 1
10 10.3 7.6 4.4 1
20 10.8 8.2 4.7 1
Table 2: KVM environment
W | core | mem OS Storage
Host - 8 8GB | Fedora 14 Dedicated
storage
CentOS S840Pro
1 10 1 1GB 6.4 30GB
CentOS S840Pro
2 7 1 1GB 6.4 30GB
CentOS S840Pro
3 | 4| 1 | 1GB 6.4 30GB
CentOS S840Pro
4 1 1 1GB 6.4 30GB

to 10 times. However, the MoTS algorithm does not
directly apply the F value to the time slice. The av-
erage value of the F' values of the latest BW seconds
is multiplied by F' to obtain the F' value reflecting the
F value of the W seconds and the average value of
the F values of the latest BW seconds is multiplied
by the time slice size of the corresponding virtual ma-
chine. Through this process, it is possible to prevent
the time slice from being changed suddenly, and the
latest bandwidth can be appropriately reflected in F.

4. EXPERIMENTS AND RESULTS
4.1 Experiments Environment

To evaluate the performance of the MTS-CFQ I/0
scheduler, two types of benchmark tools were used

FileBench and TraceReplayer [13] [14]. We per-
formed the experiment with a total of five kinds of
workloads (Fileserver, Varmail, TraceReplayer, MSN,
Exchange, and Financial)with FileBench. In order
to measure bandwidth distribution performance, four
KVM virtual machines were set up and operated, and
various I/O weights were set from 1 to 10 from VM1
to VM4. The SSD used the recently sold Samsung
840 Pro 256GB model, and created four 30GB each
in four partitions, allowing four virtual machines to
use each partition independently. Table 2 summarizes
the experimental environment.

4.2 Results

The MTS-CFQ performance evaluation is based
on the characteristics of the garbage collection, and
the SSD is classified into the aged state and the SSD
with no data. Table 3 summarizes the characteristics
of the workloads used in the experiment. The existing
I/0 scheduler, CFQ, differs in bandwidth allocation
performance from aged SSDs to clean SSDs in most
workloads. Experiments have shown that when writ-

SSD Bandwidth Distributing I/O Scheduler Considering Garbage Collection 5

Table 3: Properties of experiment workload

workload | write/read ratio ave;iazgeta(ll“{eé];lest
Fileserver 2 73
varmail 1 24
MSN 66.7 225
Exchange 1.5 195
Financial 0.24 538

8CFQ sMTS-CFQ =ideal

SRS

1/O bandwidth rate

(=T S N -

(a)Aged SSD

sCFQ sMTS-CFQ oideal

_ =
ISENY

/O bandwidth rate

=TS N - -)

VM2
(b)Cleaned SSD

Fig.7: Results of fileserver workload

ing to an aged SSD by performing a lot of write op-
erations on the SSD, the garbage collection operation
occurs as described above, thereby causing a problem
in bandwidth distribution performance.

Clean State SSDs exhibited better bandwidth
distribution performance than aged SSDs, but did
not show ideal bandwidth distribution performance
across all workloads. However, since the MTS-CFQ
scheduler proposed in this study adjusts the time slice
by measuring the bandwidth in real time, the result
shows that it is close to the ideal bandwidth distri-
bution in most cases.

Fig. 7 and 8 show that the error rates of fileserver
and varmail workloads are about 20% for the aged
SSDs and 15% for the clean SSDs. However, MTS-
CFQ showed error rates of 8% for the fileserver work-
load and 2% for the varmail workload. In the case of
the MSN workload shown in Fig. 9, the performance
of the SSD was improved from 14.2% to 7.6% in the
aged state, but the performance was slightly lowered
in the clean state. The exchange workload shown in
Fig. 10 shows good performance within error rate of
5% for both CFQ and MTS-CFQ.

5. CONCLUSION

This study aims to improve bandwidth distribu-
tion performance when multiple virtual machines

. sCFQ sMTS-CFQ =ideal
210
s
= 8
3
Z6
&
ot H
)
0 I BRI
VM2 VM3 VM4
(a)Aged SSD
8CFQ sMTS-CFQ oideal
12
210
E
£ 8
]
26
g
o | IH
) .
0 E BRI
VM2 VM3 VM4

(b)Cleaned SSD

Fig.8: Results of varmail workload

usCFQ sMTS-CFQ =ideal

=
S)

1/0 bandwidth rate

[=T SN

VM2
(a)Aged SSD

sCFQ sMTS-CFQ oideal

=R S

1/0 bandwidth rate

(=T SR N -

(b)Cleaned SSD

Fig.9: Results of MSN workload

share one storage medium in a virtualized environ-
ment. In particular, we focused on SSD, which is
the newest storage medium, and observed that the
bandwidth allocation performance when the garbage
collection occurs in SSD is different from that in the
case where the garbage collection does not occur. To
improve this, MTS-CFQ I/0 scheduler.

The MTS-CFQ I/O scheduler modified the exist-
ing Linux I/O scheduler CFQ to improve I/O band-
width distribution performance. MTS-CFQ first ob-
serves whether the bandwidth of the partition of the
storage medium shared by the virtual machine is di-
vided according to the user’s intention. If the band-
width allocation is not better than the user-specified

8CFQ ®sMTS-CFQ oideal

= =
ST)

1/O bandwidth rate

VM2 V;B VM4
(a)Aged SSD

(=TS N]

sCFQ sMTS-CFQ omideal

S

1/O bandwidth rate

§ H
VM2 VM3 VM4
(b)Cleaned SSD

(=T S N -)

Fig.10: Results of Exchange workload

weight, a dynamic time-slice control method is used
that increases the I/O time slice of the virtual ma-
chine and reduces the I/O time slice when the band-
width distribution is good.

As a result of performance evaluation of MTS-CFQ
I/O scheduler using benchmark tool, bandwidth dis-
tribution performance when SSD garbage collection
occurs and when it does not occur improved perfor-
mance compared to existing CFQ I/O scheduler, And
the I/O bandwidth is distributed according to a pre-
determined weight.

References

[1] X. Song, J. Yang, and H. Chen, Archi-
tecting Flash-based Solid-State Drive for High-
performance 1/0 Virtualization, Computer Archi-
tecture Letters, vol. 13, no. 2, pp. 61-64, July
2013.

[2] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and
Li Zhou, S-CAVE: Effective SSD Caching to Im-
prove Virtual Machine Storage Performance, In
Proc. of International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT),
pp. 103-112, Sep. 2013.

[3] H. Tan, C. Li, Z. He, K. Li and K. Hwang, VMCD:
A Virtual Multi-Channel Disk I/0 Scheduling
Method for Virtual Machines, IEEE Transactions
on Services Computing, vol. 9, no. 6, pp. 982-995,
May 2015.

[4] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and
D. Liu, vCacheShare: Automated Server Flash
Cache Space Management in a Virtualization En-
vironment, In Proc. of USENIX Conference on
USENIX Annual Technical Conference(ATC), pp.
133-144, June 2014.

ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.12, NO.1 May 2018

[5] Y. Yang and J. Zhu, Analytical modeling of
garbage collection algorithms in hotness-aware
flash-based solid state drives, 2014 30th Sympo-
sium on Mass Storage Systems and Technologies
(MSST), pp. 1-10, June 2014

[6) W. Shin, M. Kim, K. Kim and H. Y. Yeom,
Providing QoS through host controlled flash SSD
garbage collection and multiple SSDs, In Proc. of
2015 International Conference on Big Data and
Smart Computing (BigComp), Feb. 2015.

[7] S. Seelam, R. Romero, P. Teller and B. Buros,
Enhancements to Linuz I/0O Scheduling, In Proc.
of the Linux Symposium, pp. 175-192, Sept. 2014.

[8] Q. Niu, J. Dinan, Q. Lu and P. Sadayappan,
PARDA: A Fast Parallel Reuse Distance Analy-
sis Algorithm, IEEE 26th International Parallel &
Distributed Processing Symposium (IPDPS), pp.
1284-1294, May 2012.

[9] D. Kang, C. Kim ; K. Kim and S. Jung, Pro-
portional Disk 1I/O Bandwidth Management for
Server Virtualization Environment, International
Conference on Computer Science and Information
Technology(ICCSIT ’08), pp. 647-652, Sept. 2008.

[10] Q. Deng, Y. Luo, and J. Ge, Dual threshold
based unsupervised face image clustering, In Proc.
of the 2nd International Conference on Industrial
Mechatronics and Automation, pp. 436-439, May
2010.

[11] SIMGRID Project, http://simgrid.gforge.inria.fr.
[12] iostat, http://www.freebsd.org/cgi/man.cgi?iostat.
[13] filebench, http://sourceforge.net/projects/filebench.
[14] ioreplay, https://code.google.com/p/iocapps/wiki/

ioreplay.

Jung Kyu Park received the M.S.
and Ph.D. degrees in computer engineer-
ing from Hongik University in 2002 and
2013, respectively. He has been a re-
search professor at the Dankook Uni-
versity since 2014. From 2016 to 2017,
he was a visiting professor at Depart-
ment of Digital Media Design and Appli-
cations, Seoul Women's University. In
2018, he joined the assistant professor of
Department of Computer Software En-
gineering, Changshin University. His research interests include
operating system, new memory, embedded system and robotics
theory and its application.

Jaeho Kim received the BS degree in
information and communications engi-
neering from Inje University, Gimhae,
Korea, in 2004, and the MS and PhD de-
grees in computer science from the Uni-
versity of Seoul, Seoul, Korea, in 2009
and 2015, respectively. He is currently
a postdoctoral researcher in the Depart-
ment of Electrical and Computer Engi-
neering at Virginia Polytechnic Institute
and State University (Virginia Tech),
Blacksburg in Virginia, US. His research interests include stor-
age systems, operating systems, and computer architecture.

