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Enhanced Running Spectrum Analysis for
Robust Speech Recognition Under Adverse
Conditions: Case Study on Japanese Speech
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ABSTRACT

In real environment, many noises degrade the per-
formance of Automatic Speech Recognition (ASR)
systems. In addition, in case of similar pronuncia-
tions, it is not easy to realize high accuracy of recog-
nition rate. From this point of view, our work envis-
aged an enhanced processing algorithm into speech
modulation spectrum as Running Spectrum Analy-
sis (RSA). It is also adequately applied to observed
speech data. In the envisaged method, a modula-
tion spectrum filtering (MSF) method directly mod-
ifies the observed cepstral modulation spectrum by
Fourier transform of the cepstral time frequency. The
method and experiments carried out for various pass-
bands had favorable results that showed the improve-
ment of about 1-4 % recognition accuracy as com-
pared with current conventional methods.

Keywords: MFCC, HMM, ASR, RSF, RSA

1. INTRODUCTION

The fundamental stages in speech recognition are
speech feature extraction and feature matching. Var-
ious speech features, including ones from linear pre-
diction coding (LPC) [1-4], time-varying linear pre-
diction coding (TVLPC) [5], mel frequency cepstral
coefficients (MFCC) [6-9] among others, have been
used to model speech recognition either singularly or
collectively in improving speech recognition accura-
cies. MFCC, which is based on spectral content of
the signal and can be considered as one of the stan-
dard method for feature extraction [10] is opted for
use in our study.

Speech recognition systems often suffer from mul-
tiple sources of variability due to corrupted speech
signal features [11]. In compensating for distortions,

Manuscript received on April 3, 2017 ; revised on May 12,
2017.
Final manuscript received on June 6, 2017.
1,2,3 The authors are with Graduate School of Informa-

tion Science and Technology, Hokkaido University, Kita 14,
Nishi 9, Kita-ku, Sapporo 060-0814, Japan., E-mail: mu-
fungulwac@gmail.com, hiroshi.tsutsui@ist.hokudai.ac.jp and
miya@ist.hokudai.ac.jp
4 The author is with Vehicle Information and Communication

System Center (VICS Center), Nittochi Kyobashi Bldg., 8F,
2-5-7 Kyobashi, Chuo-ku, Tokyo, 104-0031, Japan., E-mail: s-
abe@vics.or.jp

most speech recognizers use normalization methods
and noise filtering techniques in conjunction with
voice activity detection (VAD) techniques. Improved
accuracy in noise robust speech recognition can be re-
alized by processing speech using running spectrum
filtering (RSF)[12, 13], for example. The downside, is
high computation costs and high demand on memory.

In recent past, several typical methods relating to
the use of modulation spectrum features for noisy
speech recognition have been developed [14–16]. Run-
ning spectrum analysis (RSA) is not only an effective
technique for reduction of noise on the modulation
spectrum domain (MSD)[17] but it can also be de-
ployed to realize ideal processing [18].

Although running spectrum analysis (RSA) is a
well known method focusing on modulation spec-
trum, it has mostly been applied for automatic
continuous speech recognition [19]. Furthermore,
in speech communication, its application has been
mainly focused on frequency components in the range
of 2-8 Hz because this range contains the domi-
nant components of the amplitude envelope of speech
[20][21]. Modulation frequency band higher than 8 Hz
can be regarded as miscellaneous noise components or
such unnecessary speech components for recognition
as speaker’s characteristics such as tone, pronuncia-
tion, etc [22].

However, this work presented a novel noise-robust
feature extraction framework that leveraged the tech-
nique of RSA on isolated phrase recognition. This
work was envisaged with the goal to enhance RSA for
the purpose of achieving higher recognition accuracy
for both male and female, similar and non-similar pro-
nunciation Japanese speech phrases under noisy con-
ditions. Robust speech features realized using this
method can be required in many applications, in-
cluding modelling for analysis/synthesis and recogni-
tion of isolated utterances with “Listen/Not-Listen”
states. Situations in which this method can be ap-
plied include tasks that require human machine in-
terface such as automatic call processing in telephone
networks and query based information systems such
as voice dictation, stock price quotations, [23] among
others. Authors assume that the proposed method
performance relates with gender just as recognition
accuracy can be influenced by the signal-to-noise ra-
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tio (SNR) which the authors aim to ascertain.
In this study, the work applied running spectrum

analysis (RSA) on modulation spectrum for noise ro-
bust speech recognition of adequately selected fre-
quency components. The noise effect was dealt with
filtering the range of frequency components, 1-7 Hz,
1-15 Hz, 1-35 Hz and 1-40 Hz in the modulation spec-
trum domain. Further, it is argued that the expected
speech recognition accuracy can be improved when
modulation spectrum filtering (MSF) directly modify
the cepstral modulation spectrum (CMS) [16] which
is specifically referred to as the Fourier transform of
the cepstral time sequence.

Although hidden Markov modelling (HMM) based
approaches require training in automatic speech
recognition (ASR) systems, the HMM method has
been widely used. Since there are several noise re-
duction methods and speech enhancement methods
against any noises, almost all of ASR systems using
HMM and noise reduction can show higher accuracy
of speech recognition rate than that given by a con-
ventional standard HMM based ASR.

The rest of the paper is organized as follows. In
Section 2, the proposed system is explained. In Sec-
tion 3, performance of proposed method is evaluated.
In the same section, experimental conditions are ex-
plained and the results stated. Section 4 discusses
the results and in Section 5 which is the conclusion
compares the enhanced RSA over the RSF.

2. PROPOSED SYSTEM

The motivation of this study is to evaluate the ef-
fectiveness of the enhanced running spectrum anal-
ysis (RSA), which is explained later, as it compares
with running spectrum filtering (RSF). RSA is the
processing of speech over modulation spectrum do-
main. Linguistically dominant factors of the speech
signal may occupy different parts of the modulation
spectrum than do some non-linguistics factors such
as steady additive noise [24]. A proper processing
of modulation spectrum of speech may improve qual-
ity of noisy speech. Investigations on possibilities of
the modulation spectrum domain for enhancement of
noisy speech [25][26] support the dominance of modu-
lation spectrum components in the vicinity of 2-8 Hz
in speech communication.

We now explain the effect of noise in running and
modulation spectrum domains.

For standard speech information processing, the
frame concept has been applied. The 256 sample
point length frame is first defined and using this
frame, a short time speech waveform is extracted.
For the short time speech waveform, a speech power
spectrum is calculated as a typical speech analysis.
The frame is shifted with 128 points and then many
short time speech waveforms can be obtained. Run-
ning spectrum is defined as the time trajectory in
frequency domain. It consists of many speech power

spectra given from short time frames. The modu-
lation spectrum is defined as the spectrum in time
varying of short-time running spectrum.

Figures 1(a) and 1(b) show the power spectra of
clean speech and speech with additive white noise at
10 dB SNR for a Japanese phrase /genki/. Both spec-
tra are calculated from short time speech waveforms.
These figures indicate that the dynamic range on a
power spectrum of a noisy speech is smaller than
that of a clean spectrum. In addition, some of the
power spectrum characteristics are unobservable un-
der noisy conditions. Figure 1(c) shows the running
spectrum of clean speech while Figure 1(d) shows the
running spectrum of noisy speech of the same phrase
/genki/. There are three axes, i.e., frequency axis,
frame number axis and power amplitude axis.

When we observe the data on the frame number
axis, the frequency is fixed to a specific value, its data
can be recognized in the time domain. They can be
applied by using fast Fourier transform (FFT). After
such FFT is applied to all frequencies, we can get
new 3-d data in the modulation spectrum domain.
Modulation spectrum of the noisy signal is shown in
Figure 1(f) and the modulation spectrum of the clean
speech is shown in Figure 1(e).

Fig.1: Power spectra of (a) clean speech, and (b)
noisy speech phrase /genki/ with white noise at 10
dB SNR. Running spectrum of (c) clean speech and
(d) noisy speech. Modulation spectrum of (e) clean
speech and (f) noisy speech with RSF
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Figure 2 shows the proposed system for which re-
sults and analysis are presented in Section 3. The
left side of the figure shows the processes for male
speakers while the right side of the same figure shows
processes for female speakers. For each gender case,
two output models for similar pronunciation (SP) and
non similar pronunciation (NSP) respectively are re-
alized. In the proposed system, there are four differ-
ent kinds of filtering in RSA. The optimal filtering of
RSA is applied for male and female speakers, SP and
NSP.

In Figure 2, noisy speech at different signal-to-
noise ratio (SNR) is input into a short-term energy
(STE) based VAD for the purpose of retaining speech
segments with sufficient energy while eliminating seg-
ments classified as noisy as well as silent. As in the
case of training, the speech features are extracted us-
ing the standard MFCC as spectral analysis. A HMM
based automatic speech recognition (ASR) system is
utilized for testing. The gender of speaker (male or
female) as well as the speech type, SP or NSP for each
gender case are decided. This process results in four
outputs; male SP, male NSP, female SP and female
NSP, respectively. For each gender and speech type
combination, the speech signal is passed through a
voice activity detection (VAD) process in order to re-
tain segments with speech activity or segments with
high energy while eliminating segments with back-
ground noise or the ones with less energy prior to
feature extraction.

Figure 3 shows the feature extraction process us-
ing fast Fourier transform (FFT) based MFCC with
running spectrum filtering (RSF) for log spectra as a
noise reduction technique.

In figure 3, it is shown that in order to obtain
mel cepstrum, speech data is initially pre-emphasized
and the pre-emphasized speech waveform in time do-
main is frame-blocked and windowed with a pre-
defined analysis window. Later, fast Fourier trans-
form (FFT) is computed. The magnitude of the out-
put is then weighted by a series of mel filter frequency
responses whose center frequencies and bandwidth
roughly match those of auditory critical band filters
[27]. The FFT bins are later combined so that each
filter has unit weight. From the weighted sums of all
amplitudes of signals, a vector is obtained by loga-
rithmic amplitude compression computation. RSF is
then applied before transforming the result to MFCC
parameter by discrete cosine transform (DCT).

The performance of most if not all speech/audio
processing methods is crucially dependent on the ro-
bustness of the extracted speech features. The ac-
curacy of automatic speech recognition remains one
of the important research challenges [23]. Most cur-
rent feature extraction methods are still vulnerable
against certain noises such as car noise [28].

Figure 4 shows the MFCC feature extraction pro-
cess with running spectrum analysis (RSA). After

spectral analysis, RSA is applied to realize the mod-
ulation spectrum. After which stage the process is
as explained under feature extraction with RSF. In
both cases, the features are trained into HMM, re-
spectively.

In this paper, different types of enhanced RSA
were selected for male and female speakers under
noisy conditions.

During our preliminary study, among the RSA
type (c) and type (f) were found to be better per-
formers for male NSP and for SP respectively. Our
study have also shown that, for example, in the case
of female NSP, RSA with type (h) is better performer
at high noise while type (c) and type (d) perform bet-
ter at low noise. Similarly, for female SP, RSA with
type (c) and type (h) were found to be better per-
formers at high noise while type (d) performed bet-
ter at less noise, respectively. The candidate of results
with male or female speech are selected based on the
maximum likelihood of HMM. Under noisy conditions
different types of RSA show different performance for
male and female speakers.

The proposed RSA differs from the one discussed
in [19], for example. The former focuses on modula-
tion frequency range of 2-8 Hz. However, in this study
we evaluate the performance of several RSA types
shown in Table 1. Table 1 shows 8 RSA passband
specifications whose different sets of values are given
as examples of filtering. In the modulation spectrum,
it is possible to see the frequency range of the power
concentration for each phrase and thereby help to de-
cide which RSA type is most suitable. Each passband
has a low cut-off frequency (LCF), and a high cut-
off frequency (HCF). The difference between the two
frequencies represents the number of frequency com-
ponents over the modulation spectrum domain that
are to be processed. In this way, we aim to deter-
mine the performance of new RSA over that of RSF
by changing parameters such as; i) the number of fre-
quency components (7, 15, 30, or 40 components),
ii) the type of speaker (male or female), and iii) the
signal-to-noise ratio (SNR) (10 dB, 15 dB, or 20 dB).

Table 1: RSA passband specifications
RSA Type LCF (Hz) HCF (Hz)

(a) 1 7
(b) 1 15
(c) 1 35
(d) 1 40
(e) 0.5 7
(f) 0.5 35
(g) 0.1 7
(h) 0.1 35

3. EXPERIMENTAL RESULTS

3.1 Objectives of the Experiments

The first objective of the experiments is to com-
pare the performance of the proposed enhanced RSA
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Fig.2: Proposed system.

Fig.3: Feature extraction with RSF.

to that of RSF on similar and non-similar Japanese
pronunciation phrases. The second objective is to
evaluate how the performance relates to gender. The
main method used for speech enhancement is filter-
ing. We have evaluated the adaptability of our pro-
posed RSA over modulation spectrum and compared
its results to those of RSF. In this study, RSF is em-
ployed to act as the basis for comparing the tendency
and to determine better performing RSA types at the
given SNR for both gender.

3.2 Simulation parameters and conditions of
experiments

Table 2 shows the simulation parameters.

Fig.4: Feature extraction with RSA.

Training sets of 30 male speakers and 30 female
speakers, each speaker uttering 6 similar phrases and
100 Japanese common phrases, respectively, and each
phrase repeated 3 times, are used for the front-end
feature extraction and 32-states isolated phrase hid-
den Markov modeling (HMM) in training. Testing
sets consisting of 10 male speakers and 10 female
speakers (not used in training), with each speaker
uttering 6 similar phrases and 100 Japanese common
phrases and each phrase repeated 3 times respectively
are utilized.

The speech sample is 11.025 KHz and 16-bit
quantization. Frame-by-frame, 38-dimensional FFT
based MFCC feature vectors are extracted after pre-
emphasis and Hanning windowing. In the testing
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Table 2: The condition of speech recognition exper-
iments

Parameter name Parameter value/type
Sampling 11.025 kHz (16-bit)
Frame length 23.2ms (256 samples)
Shift length 11.6ms (128 samples)
Pre emphasis 1−0.97z−1

Windowing Hanning window
Speech bi(i = 1, . . . , 12)
Feature ∆bi(i = 0, . . . , 12),
vectors ∆2bi(i = 0, . . . , 12),
Training Set 30 male , 30 female

3 utterances each
Tested Set 10 male, 10 female,

3 utterance each
Acoustic Model 32-states isolated phrase HMMs
Noise 4 types from NOISEX-92
varieties (white,pink, HF radio channel,

babble)
SNR 10 dB, 15 dB, 20 dB
Filtering RSF, RSA,
methods

stage, 10 dB, 15 dB, and 20 dB of the 4 types of
noises are artificially added to the original speech. We
compare the performance of proposed enhanced RSA
of specified passbands to those by RSF under 4 types
of noises; white, pink, HF channel and babble noises
in MATLAB (R2014a) software. Under the stated
conditions, we measure the average recognition rates
for 10 speakers on RSF and 8 enhanced RSA pass-
band specifications given as Types (a) to Type (h) at
10 dB 15 dB, and 20 dB SNR.

Table 3 shows the average recognition accuracy for
100 Japanese common male speech phrases. Table 4
shows the average recognition accuracy for Japanese
similar pronunciation male speech phrases. Table
5 shows the average recognition accuracy for 100
Japanese common female speech phrases. Table 6
shows the average recognition accuracy for Japanese
similar pronunciation female speech phrases.

3.3 Simulation results and analysis

Analysis is carried out for the Japanese common
and similar phrases databases. We use gender (male
and female) and 4 SNR (at 10 dB, 15 dB, and 20
dB) as variables. Results analysis focuses on the per-
formance of the enhanced RSA types on the vari-
ous acoustic measures. The 4 kinds of noises used
in the experiments are based on Signal Processing
Information Base (SPIB) noise data measured in
field by Speech Research Unit (SRU) at Institute for
Perception-TNO, Netherlands, United Kingdom, un-
der the project number 2589-SAM (Feb. 1990) In this
paper the model formulation is as follows: the model
uses FFT based MFCC coefficients consisting of 38-
dimensional feature vectors. The 38-parameter fea-

ture vector consisting of 12 cepstral coefficients (with-
out the zero-order coefficient) plus the corresponding
13 delta and 13 acceleration coefficients is given by
[b1b2 . . . b12∆b0∆b1 . . .∆b12∆

2b0∆
2b1 . . .∆

2b12] where
bi, ∆bi and ∆2bi, are MFCC, delta MFCC and delta-
delta MFCC, respectively.

3.4 Results Explanations

In Table 3 at 10 dB SNR, RSA with type (c) per-
forms better (76.6 %) compared to RSF (72.5 %). At
15 dB SNR, RSA with type (c) performs better (90.1
%) compared to RSF (87.6 %). RSA with type (c)
performs better (94.9 %) than RSF (92.8 %) at 20
dB SNR.

RSA with type (c) (1 35) performs better than
RSA with type (a). For RSA with type (c), the recog-
nition accuracy results decline (from 76.6 % to 72.6 %
for type (c) and type (f) and (h), respectively) with
increase in bandwidth (for (c)(1 35), (f) (0.5 35), and
(h) (0.1 35)).

Overall, RSA with type (c) (1 35) performs better
at the given SNR.

In Table 4 RSA with type (f) performs better (69
%) than RSF (58 % ) at 10 dB SNR. RSA with types
(f) and (h) perform better (67 %) than RSF (60 %)
at 15 dB SNR. RSA with types (f) and (h) perform
much better (73 %) than RSF (66 %) at 20 dB SNR.

At 10 dB, increase in bandwidth from RSA with
type (f)(0.5 35) to RSA with type (h)(0.1 35) there is
a slight decline in recognition accuracy of 1 % (from
69 % to 68 %). On the other hand, at 15 dB and 20
dB SNR similar increase in bandwidth of RSA with
type (f)(0.5 35) to that of RSA with type (h) (0.1 35)
shows no change in results, both at 67 % and 73 %
respectively.

Overall, RSA with type (f) (0.5 35) performs bet-
ter.

In Table 5 at 10 dB SNR, RSA with type (h) per-
forms better (58.7 %) than RSF (56.3 %). RSA with
type (h) is a better performer (82.7 %) among the new
RSA and is better than RSF (79.9 %) at 15 dB SNR.
RSA with types (c) and (d) are better performers
(91.1 %) among the new RSA and their performance
is better compared to RSF (89.1 %) at 20 dB SNR.

Generally, RSA with a 35 frequency component
range shows a better performance than RSA with a
7 frequency component range.

For RSA with a 35 frequency component range,
the recognition accuracy results increases from 55.8
% to 57.6 % and later to 58.7 % at 10 dB SNR and
from 80.8 % to 82.3 % and later to 82.7 % at 15 dB
SNR for RSA with type (c) (1 35), RSA with type (f)
(0.5 35) and RSA with type (h) (0.1 35),respectively.
At 20 dB SNR, there is a slight decline in accuracy
from 91.1 % to 90.5 % for RSA with type (c) (1 35)
and both RSA with types (f) (0.5 35) and (h) (0.1
35) respectively.

RSA with type (h) (0.1 35) performs better at <
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Table 3: Average recognition accuracy(%) for 100 Japanese common male speech phrases
Avg(%) for 4 Noises
10 dB 15 dB 20 dB

RSF 72.5 87.6 92.8
RSA:Type(a) 69.3 83.5 88.5
RSA:Type(b) 74.0 87.0 91.3
RSA:Type(c) 76.6 90.1 94.9
RSA:Type(d) 76.5 89.9 94.8
RSA:Type(e) 66.4 81.2 86.5
RSA:Type(f) 72.6 87.2 92.7
RSA:Type(g) 66.9 81.2 86.4
RSA:Type(h) 72.6 87.2 92.7

Table 4: Average recognition accuracy(%) for Japanese similar pronunciation male speech phrases
Avg(%) for 4 Noises
10 dB 15 dB 20 dB

RSF 58 60 66
RSA:Type(a) 57 61 61
RSA:Type(b) 63 65 71
RSA:Type(c) 65 66 68
RSA:Type(d) 65 66 70
RSA:Type(e) 62 63 67
RSA:Type(f) 69 67 73
RSA:Type(g) 55 56 61
RSA:Type(h) 68 67 73

Table 5: Average recognition accuracy(%) for 100 Japanese common female speech phrases
Avg(%) for 4 Noises
10 dB 15 dB 20 dB

RSF 56.3 79.9 89.1
RSA:Type(a) 51.5 75.9 84.4
RSA:Type(b) 56.3 80.3 89.4
RSA:Type(c) 55.8 80.8 91.1
RSA:Type(d) 55.3 80.5 91.1
RSA:Type(e) 55.0 80.2 88.2
RSA:Type(f) 57.6 82.3 90.5
RSA:Type(g) 55.5 80.3 88.2
RSA:Type(h) 58.7 82.7 90.5

Table 6: Average recognition accuracy(%) for Japanese similar pronunciation female speech phrases
Avg(%) for 4 Noises
10 dB 15 dB 20 dB

RSF 55 62 71
RSA:Type(a) 60 67 70
RSA:Type(b) 60 67 70
RSA:Type(c) 62 63 73
RSA:Type(d) 58 66 75
RSA:Type(e) 60 62 69
RSA:Type(f) 57 64 69
RSA:Type(g) 62 62 69
RSA:Type(h) 59 64 68

20 dB SNR while RSA with types (c) (1 35) and (d)(1
40) perform better at > 15 dB SNR.

In Table 6 RSA with types (c) and (h) show better
performance (64 %) among RSA schemes and are bet-
ter than RSF (57 %) at 10 dB SNR. At 15 dB SNR,
RSA with type (d) performs better (72 %) than other
RSA schemes and better than RSF (68 %). RSA with
type (d) is a better performer (77 %) among the RSA
schemes and equally performs better than RSF (75 %)
at 20 dB SNR. Generally, RSA with a 35 frequency
component range shows a better performance than

RSA with a 7 frequency component range.
For RSA with a 35 frequency component range,

the recognition accuracy shows a tendency of decline
from 64 % to 62 % at 10 dB SNR and a decline from
71 % to 69 % at 15 dB SNR and from 78 % to 76 %
at 20 dB SNR for RSA with type (c) (1 35) and RSA
with type (f) (0.5 35),respectively.

3.5 Analysis

Conventionally, RSF is a bandpass filter in a sys-
tem that reduces the amplitudes of signal compo-
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nents that lie outside a given frequency range. It
only lets through components within a band of fre-
quencies. Bandpass filters are particularly useful for
analysing the spectral content of signals. The pro-
posed RSA simulates bandpass filtering by processing
selected frequency components in modulation spec-
trum domain.

Experimental results show that the proposed RSA
performs better than conventional RSF. In the case
of Japanese common speech phrases for male speaker
in Table 3, new RSA with type (c) (1 35) produce
better results while for Japanese similar pronuncia-
tion male speech phrases in Table 4, new RSA with
type (f) (0.5 35) show better performance among the
evaluated specifications.

In the case of Japanese common female speech
phrases in Table 5, the proposed RSA with type (h)
(0.1 35) show better results while for Japanese similar
pronunciation female speech phrases in Table 6, the
proposed RSA with type (c) (1 35) and RSA with
type (g) (0.1 7) at 10 dB, the new RSA with type
(a) (1 7) and with type (b) (1 15) at 15 dB, and the
RSA with type (d) at > 15 dB SNR perform better,
respectively.

Based on the experimental results, for male NSP
we found the most effective method to be RSA with
type (c) (1 35) at all SNR under consideration while
for male SP RSA with type (f) (0.5 35) was better at
> 10 dB SNR. In the case of female speaker, the re-
sults indicate that for NSP the most effective method
is RSA with type (h) (0.1 35) at < 20 dB SNR, while
at > 15 dB SNR, RSA with type (d) (1 40) show bet-
ter performance. For SP, RSA with type (h) (0.1 35)
is better at < 15 dB SNR while RSA with type (d)
(1 40) performs better at > 10 dB SNR.

4. DISCUSSION

In this section, we discuss the findings of our ex-
periments. We show the positive contributions in ap-
plying the proposed enhanced RSA types with high
frequency components on isolated speech recognition.
By using a different number of frequency components,
we mimic bandpass filtering to isolate each frequency
region of the signal in turn so that we can measure
the energy in a selected region. The same process is
applied both on male and female speech recognition.
Table 7 shows the average improvement on recogni-
tion accuracy for the better performers at each SNR.

Table 7: Average recognition improvement(%)
Avg improvement(%)
10 dB 15 dB 20 dB

Male, NSP 4.1 2.5 2.1
Male, SP 11 7 7
Female, NSP 2.4 2.8 2.0
Female, SP 7 4 2

Both, the speech type (NSP and SP) and SNR (at
10 dB, 15 dB, and 20 dB ) tend to have an influ-

ence on performance of proposed method hence the
difference in results. The results indicate that pro-
posed enhanced RSA depends on the input signal.
Although in each speaker and speech categories there
is a enhanced RSA type that shows a superior per-
formance. Both the wide band and narrow band per-
form differently on male and female speech phrases.
For instance, male SP has 11 % improvement at 10 dB
compared to 7 % for female SP. Our proposed method
shows improved performance on male SP compared
to female SP (11 %, 7 %, 7 %, versus 7 %, 4 %, 2
%, ) at 10 dB, 15 dB, and 20 dB, respectively. On
the other hand, results for male NSP versus female
NSP are given as (4.1 %, 2.5 % 2.1 % versus 2.4 %,
2.8 %, and 2.0 % ), respectively. It has been observed
that under the experimental conditions, male NSP is
better than female NSP at 10 dB , while female NSP
is slightly better than male NSP at 15 dB.

The accuracy of a speech recognition system can
be defined as the percentage of time that the recog-
nizer correctly identifies an input utterance. Recog-
nition errors can be generally classified as misrecog-
nitions or as nonrecognition errors. The tendency of
differences in recognition accuracy between male and
female can be attributed to many factors including
user characteristics(age, sex), the language (vocabu-
lary size), and the channel and environment (noise),
for example, among many others [29]. The more var-
ied the group of speakers using the system, the more
challenging the recognition process. It is more dif-
ficult for a speaker-independent system to recognize
accurately both male and female speakers.

The most limiting problem of larger vocabulary
sizes is the corresponding decrease in recognizer ac-
curacy. This refers to the total number of differ-
ent phrases the speech recognizer is able to identify.
Therefore, the tendency of differences in recognition
accuracy between the 100 Japanese phrases and the
Japanese similar pronunciation phrases is due to the
differences in sizes of databases. A smaller database
(of similar pronunciation phrases) has an increased
chance of better recognition accuracy compared to a
much larger database (of 100 Japanese phrases), in
this case. In the latter, increased number of mis-
recognitions and false recognitions are often recorded
as a result compared to in the former.

5. CONCLUSION

The paper proposes to use running spectrum anal-
ysis (RSA) with certain passbands for noisy speech
recognition. Performances of speech recognition for
Japanese short phrases are compared with those by
running spectrum filtering (RSF). Experiments are
conducted for various passbands, and the results show
an advantage over RSF method.Filtering is optimized
as in the case of RSA.

Theoretical analysis indicates the proposed RSA
bandpass schemes are less complex to realize and ex-
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perimental results demonstrate the effectiveness of
the proposed approach in improving the robustness
of automatic isolated phrase recognition.

From the experimental results it has been demon-
strated that the use of RSA with high frequency com-
ponents, particularly the ones in the range of (0.5 35),
for example can be useful in ASR. In this study, RSA
on a 35 frequency component range shows a better
performance than RSA on a 7 frequency component
range used in other related research study. Under
noisy conditions different types of RSA show differ-
ent performance for male and female speakers. It has
also been discovered that in the case of male speakers
system performance is influenced mostly by the RSA
type while that of female speakers, the performance
relies mostly on SNR. In future we plan to evaluate
our proposed method on recognizing children’s speech
and develop a recognition system that can distinguish
between a child voice and that of an elderly person.
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