
64 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

A Novel Strategy for Formal Verification of
Asynchronous Circuit Design in PAiD tool

Tin Thien Nguyen1 , Khoi-Nguyen LE-HUU2 ,

Thang H. Bui3 , and Anh-Vu Dinh-Duc4 , Non-members

ABSTRACT

EDA has been proposed for a long time as a cate-
gory of reliable software tools for designing electronic
systems. Although some of them have been consid-
ered as powerful tools for asynchronous circuits, a
prominent approach to cope with the biggest defect
of synchronous circuits: clock distribution issue, re-
searches in verifying the correctness of those circuits
are still limited. Therefore, an enhanced version of
PAiD, an EDA tool that has been developed at Ho
Chi Minh City University of Technology (HCMUT),
will be proposed in this work along with case studies.
It will enable engineers not only design, synthesize
asynchronous circuits but also verify them. Further-
more, a good strategy to improve the verifying per-
formance is also discussed.

Keywords: Asynchronous Circuit Design, EDA
tool, Formal Verification, Model Checking

1. INTRODUCTION

In the state of the art of digital circuit design,
synchronous circuit has been become the dominant
approach since 1960’s [4]. This circuit utilizes the
facilities of a periodic timing signal, called clock, to
synchronize the operations of its components. How-
ever, the clock signal has to be distributed glob-
ally to entire circuit. As the circuit’s size becomes
larger and more complex, this results in some main
problems such as clock skew, jitter and high power
consumption. To overcome these drawbacks, a self-
time circuit, called asynchronous circuit [4], has been
taken much attention from researchers. Instead of
using clock signal, the asynchronous circuit does syn-
chronization locally by mean of handshaking proto-
cols ([1][4][16][21]). This circuit is considered as a
promising approach for concurrent systems such as
SoC (system on chip) and NoC (network on chip).
Asynchronous circuit has rapidly attracted most of

Manuscript received on July 15, 2014 ; revised on January
27, 2015.
Final manuscript received March 16, 2015.
1,3 The authors are with Ho Chi Minh City Univer-

sity of Technology - VNUHCM, Vietnam., E-mail: thi-
entin@cse.hcmut.edu.vn and thang@cse.hcmut.edu.vn
2,4 The authors are with University of Information Technol-

ogy - VNUHCM, Vietnam., E-mail: khoinguyen@uit.edu.vn
and anhvu@uit.edu.vn

concerns from not only academia but also industry.
This researching field covers many interesting aspects
related to circuit design process such as circuit de-
scription languages, simulation, synthesis and verifi-
cation.

Obviously, describing circuits in high-level ab-
stract languages plays an important role in digital
circuit design. It allows designers to focus on the cir-
cuit functioning and leave the lower level implementa-
tion beside. In asynchronous circuit design, some de-
scription languages have been proposed such as CSP
[10], CHP [6] and ADL [8]. Their main principle is
to concentrate on the description of concurrent pro-
cess that is the nature of asynchronous circuit. The
later - ADL - is the extension of CHP language with
additional structures that are optimized to describe
asynchronous circuit more efficiently.

In addition to circuit design, it is necessary to sim-
ulate the circuit functions before proceeding further
to lower-level design steps. This can be done with
the help of Petri net [17]. Petri net (PN) is claimed
to be a good representation for concurrent systems.
However, it lacks of some conditional structures that
might be commonly existed in asynchronous circuit
description. To scope with this obstacle, authors in
[15] has already combined it with the DFG - Data
Flow Graph - to generate a more suitable intermedi-
ate representing model, called PN-DFG. This model
has been proved its efficiency in representing [15],
simulating [20], placing and routing [25] and tech-
nology mapping [29] of asynchronous circuit at high
level of abstraction.

Although asynchronous circuit has been studied
for decades, the research aspects are mostly sepa-
rated. Putting it all together in order to build an
entire EDA tool is very important for both academia
and industry. Two notable EDA tools are TAST [7]
and PAiD [9] that have been successfully synthesized
many asynchronous systems. The former is developed
at TIMA Lab, France while the latter is the generated
at HCMC University of Technology, Viet Nam. The
PAiD tool covers many level of circuit design from
high-level description using ADL to the implementa-
tion at logic-gate level. This tool is very efficient for
either researching or teaching at university.

In order to help asynchronous circuit be used
widely, it must be significantly verified for impor-
tant properties such as its correctness and reliabil-



A Novel Strategy for Formal Verification of Asynchronous Circuit Design in PAiD tool 65

ity. Moreover, in industrial circuit design, the sooner
the bugs in circuit design are detected, the more
the cost saving people will have. This requirement
has motivated many researches in asynchronous cir-
cuit verification. One of the promising approaches
is to apply formal verification [24]. This methodol-
ogy consists of two main methods that are theorem
proving and model checking. While theorem proving
requires the expert background in mathematic [11],
model checking take the advantages of modern com-
puter system power [18]. Given the circuit description
and its specification, model checking tool will handle
the rest of verifying process. Researches of applying
model checking in hardware design have been pro-
posed for years ([12][18][23]). One of their notable
achievements is the NuSMV model checker when it
can increase the number of system’s states that can
be verified [2].

In this paper, a novel symbolic model checking -
based approach for asynchronous circuit is proposed
in details. Based on NuSMV tool, this method uti-
lizes not only PN-DFG intermediate model to rep-
resent circuits but also symbolic technique to reduce
the computational complexity. Moreover, two possi-
ble verifying strategies are also discussed in this pa-
per.

The rest of this paper is constructed as follows:
Section 2 is for technical background such as asyn-
chronous circuit description and representation, PN-
DFG intermediate representing model, model check-
ing approach and the transformation from PN-DFG
to model checking model. The architecture of PAiD
tool with verification module is in Section 3. Section
4 discusses possible verifying strategies. Some case
studies are provided in Section 5. The last section is
for conclusion and the future work.

2. TECHNICAL BACKGROUND

2.1 Asynchronous Description Language (ADL)

ADL is a high-level abstraction language designed
to describe systems that contain many concurrent
processes. In ADL, the communication between those
processes is abstracted as communicating channel
with necessary operations such as read or write. It,
therefore, enables designers to concentrate on be-
haviours of the circuit without worrying about the
low level implementation, for example, communicat-
ing protocols or structures. ADL was first designed
as basic asynchronous circuit description language of
PAiD tool.

Fig. 1 represents block diagram of a 1-bit input
asynchronous decoder.

The input is read and stored by Buffer module.
Then, Buffer module will communicate with Decoder
module via channel C. According to the value re-
ceived, Decoder module will assert one of its two out-
puts. The ADL description of the circuit is shown in
Fig. 2.

Fig.1: An asynchronous decoder.

2.2 PN-DFG model

PN-DFG model is the combination of Petri nets
(PN) and Data Flow Graph (DFG). In this model, the
DFG can be attached to transition or place of original
PN. This modification makes PN-DFG model become
a very efficient representing model of asynchronous
circuits.

Fig.2: ADL description of decoder in Fig. 1.

The most notable aspect of PN-DFG model is the
different roles of DFG when attaching to transition
or place. When a DFG comes with a transition, it is
responsible for guarding the fire action of the tran-
sition. In contrast, when it comes with a place, the
DFG is responsible for representing operation that
will be carried out whenever the place holds token.

PN-DFG model is claimed that it can model any
asynchronous circuits. Each process is represented by
one PN-DFG model. Fig. 3 illustrates the PN-DFG
model of the Buffer module in above asynchronous



66 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

decoder example.

Fig.3: PN-DFG model of module Buffer in Fig. 1.

2.3 Model checking

Model checking [13] is one of well-known ap-
proaches in system formal verification. It models sys-
tem as finite-state transition model, and then the de-
sired property is checked for every approached state
systematically.

In model checking, the property is represented for-
mally by temporal logic expression, which is proposi-
tion qualified in term of time. The two typical tem-
poral logic systems are Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL).

To attack the state space explosion problem, four
typical solutions have been derived including (1) sym-
bolic representation, (2) partial order reduction, (3)
abstraction and (4) composition [14][26]. The first
solution uses symbolic representation in order to in-
crease the number of state that a model checker can
represent. The latter three aims to decrease the size
of system, so that the model checker can handle it.

The symbolic model checking [22] is proved its ca-
pacity for representing a model with (beyond) 1020
states. In our approach, the symbolic model check-
ing is chosen as the main formal method for verify-
ing asynchronous circuit. In addition, the well-known
NuSMV model checking tool is used [3].

2.4 NuSMV representation of PN-DFG model

2.4.1 System representation

In ADL, a concurrent system is usually con-
structed by many modules. The Decoder in Fig. 1,
for example, consists of two modules that are Buffer
and Decoder. It leads to two type of representation
in NuSMV. The first one - system as a whole - merges
all PN-DFG modules into only one NuSMV module.
The second one - system as components - uses one
NuSMV module for each PN-DFG module. These
two approaches are examined and turned out that
the system-as-components are more suitable in rep-
resenting asynchronous circuits [28].

2.4.2 PN-DFG model in NuSMV

By considering the correspondence between PN-
DFG model and NuSMV module, the transforma-

tion rules are built to represent PN-DFG model by
NuSMV input language - SMV language. These rules
are described clearly in [27]. Following summarizes
some of its important principles.
i. Place is transformed into Boolean variable whose

true value implies that corresponding place holds
token.

ii. Transition and its attached DFG are transformed
into the firing condition represented by a variable
under DEFINE keyword. This variable has true
value if the transition is fired in original PN and
the attached DFG is evaluated to be true.

iii. All actions related to transition firing are de-
scribed under TRANS keyword. They include
toggling corresponding place variables and exe-
cuting operations of the attached DFG in the
outgoing places.

iv. Finally, all partial transformed modules of a sys-
tem will be combined in the main module in
NuSMV.

3. PAID ARCHITECTURE

In this section, the general design structure of
PAiD tool will be described. In addition, its veri-
fication model is also taken into account.

Fig.4: The architecture of PAiD tool.

3.1 PAiD tool architecture

The architecture of PAiD tool is shown in Fig. 4.
In general, the design flow of an asynchronous circuit
using PAiD tool will consists of four main phases.
Firstly, the circuit specification is described by high-
level abstraction languages such as ADL or CHP. Sec-
ondly, an intermediate representing model - PN-DFG
model is generated based on the circuit’s description.
This model is very useful for either simulating or op-
timizing the circuit’s behaviours. Thirdly, the syn-
thesis is carried out. And finally, the circuit at gate



A Novel Strategy for Formal Verification of Asynchronous Circuit Design in PAiD tool 67

net-list level is generated. Further information about
the details of PAiD architecture can be found in [30].

Fig.5: PAiD verification module design flow.

3.2 PAiD verification module design flow

The original design flow of PAiD tool is just a one-
way flow. Hence, the additional verification module
will make it more reliable. Moreover, this module
aims at verifying the desired circuit specification at
the highest level - description level. The design flow
of verification module is illustrated in Fig. 5.

First stage of the verifying design flow relates to
expansion of high-level PN-DFG. As mentioned so
far, the ADL provides communicating channel for ex-
changing information between processes. This chan-
nel is abstracted at high level; hence, the verifica-
tion module has to expand the channel so that it can
be represented and verified in NuSMV. This is illus-
trated in Fig. 6. The 4-phase handshaking protocol
is applied to construct 4-phase handshaking PN-DFG
model from high-level PN-DFG model. Fig. 6 illus-
trates an example of the expanded PN-DFG model.
Sender module writes Data to the channel C and Re-
ceiver module reads that value into variable X.

Fig.6: 4 phase handshaking PN-DFG model: (a)
Sender, (b) Receiver.

The next stage is to apply transformation rules to
represent the expanded PN-DFG module in NuSMV.
In addition, the circuit property is expressed in term
of LTL or CTL formula. Then, NuSMV is run to
verify if the ADL description of circuit conforms the
desired property.

4. VERIFYING STRATEGY

This section describes two strategies that can be
applied to verify asynchronous circuits using symbolic
model checking.

4.1 General verification method

This method follows exactly the design flow of ver-
ification module described previously. In this ap-
proach, all channels are expanded by 4-phase hand-
shaking protocol.

For example, the 4-phase handshaking protocol de-
scribed in Fig. 6 requires up to six places, six tran-
sitions and two more variables (C Req and C Ack)
to synchronize the communication process of the two
modules over one channel. Consequently, it enlarges
the number of state that NuSMV has to verify. More-
over, those DFGs attached to additional transitions
also make the NuSMV computation more complex.
When the system is more complicated, it may consist
of many communicating channels. Hence, the situa-
tion may lead to state space explosion problem eas-
ily. That’s why we need a more efficient verification
method.

4.2 Novel verification method

In this novel verification method, a strategy is de-
veloped in order to reduce the size of the expanded
PN-DFG model. This goal can be met by eliminating
communicating channel expansion that is not neces-
sary.

This approach derives a verifying strategy as fol-
lowing steps.

1. Verify each partial PN-DFG model indepen-
dently to make sure it functions properly. This work
can be done easily since these PN-DFG models may
have small size.

2. Try to combine two or more small components
that are verified in step 1 into larger components if
possible to save handshaking stages.

By doing this approach, two processes that com-
municate over the eliminated channel will be merged
together, and so an appropriate method needs to be
developed to retain synchronization. A novel idea
would be to create two places called P write and
P read. The P write place informs receiving process
about the validation of data over the eliminated chan-
nel. In contrast, the P read place informs transmit-
ting process that the data is already absorbed by the
receiving process. These two places are only respon-
sible for synchronizing communication between pro-
cesses, and so there is no further action for them.
Therefore, their DFGs would be “skip” DFGs.

Detailed information on how to expand channel
operations is discussed shortly. Those operators in-
clude transmitting operator (≪), receiving operator
(≫) and probe operator (#).



68 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

4.2.1 Transmitting operator

The transmitting operator is expanded as shown
in Fig. 7.

Fig.7: Expanded PN-DFG represents transmitting
operator in Novel verification method.

According to the expansion, the transmitting pro-
cess can be divided into three phases: (1) checking
the channel if it is free (2) writing data and (3) wait-
ing for receiver accepts the data. In the first phase,
the transmitting process will be hold until the P write
place has no token. Then, the second phase will per-
form two operators: sending data X is written out to
channel C and assigning a token to P write place. Fi-
nally, in third state, the Sender will wait until P read
hold token to fire T1 S transition.

4.2.2 Receiving operator

The receiving operator is expanded as shown in
Fig. 8. In contrast to the expansion of transmitting
operator, the receiving operator is only divided into
two phases: (1) waiting for valid data and (2) reading
the data.

In the first phase, the receiver waits until P write
place hold token which means the data is written to
channel already. Then T0 R transition fires in the
second phase, and so the data is read into variable
y. In addition, P read place is assigned with a token
in order to inform the sender of data communicating
accomplishment.

Fig.8: Expanded PN-DFG represents receiving op-
erator in Novel verification method.

4.2.3 Probe operator

Communicating channel is used not only for trans-
ferring data but also for synchronizing between two
processes. The probe operator plays an important
role in the latter mode. The probe operation is an

Fig.9: Expanded PN-DFG represents probe operator
in Novel verification method.

action of querying the status of communicating chan-
nel. Its expansion is depicted in Fig. 9.

It is understandable that the current state of com-
municating channel is determined by the P write
place. If this place hold token, the channel is busy.
Otherwise, it is free.

4.2.4 Combining operators

Fig.10: Expanded PN-DFG represents channel com-
municating in Novel verification method.

Based on the expansion of individual operators,
the PN-DFG that represents communicating between
two processes is formed as shown in Fig. 10.

The expansion technique in Novel verification
method only requires two places for each eliminated
channel despite how many transmitting operator or
receiving operator there are in each process. Fig.
11 represents the expansion of PN-DFG for two
transmitting operators and one receiving operator.
The two transmitting operator are sharing two place
P write and P read.

Fig.11: Expanded PN-DFG represents channel com-
municating with two transmitting operator in Novel
verification method.



A Novel Strategy for Formal Verification of Asynchronous Circuit Design in PAiD tool 69

4.2.5 Novel PN-DFG expansion flow

The general flow of PN-DFG expansion in Novel
verification flow is shown in Fig. 12. As indicated
in the flow, there may be some channels that are
not eliminated. Therefore, those channels will be ex-
panded by 4-phase handshaking protocol.

Fig.12: Novel PN-DFG expansion flow.

4.3 Channel expansion comparison

This section gives some simple comparisons be-
tween two expansion techniques: (1) 4-phase hand-
shaking protocol and (2) channel eliminating. They
include the number of place, transition and additional
variables that required expanding the transmitting
and receiving operators. Details are shown in Table
1.

The 4-phase handshaking technique requires a
large number of places and transitions when there
are many channel operators. In contrast, the channel
eliminating technique only use two place for certain
eliminated channel. Therefore, this technique is ex-
pected to reduce the number of system state. As
a result, it can enhance the efficiency of verification
process.

Table 1: TTC Results and CPU Time from EP,
conventional PSO, and hybrid-PSO on IEEE RTS 24-
bus system.

N transmitting operator &
M receiving operator
No. No. Additional
Place Transition Variable

4-phase
3N + 3M 3N + 3M 4

handshaking
Channel

2 0 0
eliminating

5. EXPERIMENTATION

In this section, the verification methods described
so far will be applied to some case studies in order
to check their capacity in verifying asynchronous cir-
cuits.

5.1 Case studies

The experimentation is performed on four case
studies. They are asynchronous arbiter, selec-
tor, distributed mutual exclusion and asynchronous
pipelined finite impulse response filter.

5.1.1 Asynchronous Arbiter

Arbiter [31] is a well-known device used to control
access to a shared resource among different processes.
Fig. 13 shows block diagram of an arbiter in a system
with two processes that want to access to a common
resource.

Fig.13: Architecture of asynchronous arbiter.

The specification “If the channel c1 issues an access
request, there should be an execution path so that c
presents 1 eventually” is chosen to verify.

5.1.2 Asynchronous Selector

This asynchronous selector block diagram is shown
in Fig. 14. Its function is to determine which output
channel the data from channel E will pass through
depending on control value from channel C.

Fig.14: Architecture of the asynchronous selector.

The specification ”If channel C sends out value 0,
the data from channel E should be passed to S1 even-
tually” is chosen to verify.

5.1.3 Distributed Mutual Exclusion

The Distributed Mutual Exclusion (DME) is a
well-known mutual exclusion problem between N con-
current processes. A distributed algorithm requires at
most N message exchanges for one mutual exclusion
invocation. Fig. 15 represents the model of DME
that has three processes.



70 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

Fig.15: Model of 3-process DME.

This case study implements “The Reflecting Privi-
lege” [5] solution for this DME problem. The specifi-
cation ”Only one process can access common resource
at a time” is chosen to verify.

5.1.4 Asynchronous Pipelined Finite Impulse Re-
sponse Filter

This benchmark illustrates the pipelined imple-
mentation of a finite impulse response (FIR) filter.
Different from the FIR filter described in [19], the
filter mentioned in this work is described by the fol-
lowing equation:

y(n)=h(n) ∗ x(n) =
N-1∑
k=0

h(k)× x(n-k)

The filter is so-called N-tap FIR filter. Fig. 16
shows the design of a 3-tap asynchronous pipelined
FIR filter.

Fig.16: Architecture of the asynchronous pipelined
FIR filter.

The specification “Each buffer must read its pre-
decessor buffer’s value and then send the value to its
successor buffer” is chosen to verify.

5.2 Running environment setup

The running environment is set on Intel Core i7 -
4770 CPU 3.40Gh x 8 processor. The memory size
is 15.4 GB. The PC runs Ubuntu 13.04.

The NuSMV version is 2.5.4.

5.3 Running results

The experimentation results include (1) experi-
ment on transforming process form PN-DFG model
to SMV description, and (2) running results of
NuSMV.

5.3.1 PN-DFG model to SMV description transform-
ing results

This experiment collects the information about the
number of places and transitions that are generated
in SMV description file after being transformed from
PN-DFG model. Table 2 shows this experiment re-
sult. The first column, N column, describes the com-
plexity of benchmarks.

Table 2: Experiment on PN-DFG model to SMV
description transformation.

N
No. of places No. of transitions

General Novel General Novel
strategy strategy strategy strategy

Asynchronous Arbiter
29 - 28 -

Asynchronous Selector
35 - 36 -

Distributed Mutual Exclusion
2 cells 86 76 92 76
3 cells 129 114 138 114
4 cells 172 152 184 152
6 cells 258 228 276 228
8 cells 344 304 368 304
Asynchronous Pipelined FIR Filter
2-tap 87 71 84 68
3-tap 130 110 126 105

This table aims at comparing results from two veri-
fying strategies described previously. Due to the first
two case studies are too simple, applying the novel
strategy is totally unnecessary. Thus, it is marked as
“-”.Table 2 also indicates that the number of places
and transitions reduce proportionally to the size of
the case studies. This reduction is expected to en-
hance the computation of NuSMV.

5.3.2 NuSMV running results

NuSMV running results include: (1) Running time
spent on NuSMV tool to finish process of verifying
desired property and (2) the number of BDD nodes
that are generated by NuSMV while it is running.
The running time indicates how fast the circuit spec-
ification is verified. On the other hand, the number
of BDD nodes provides information about how com-
plex the benchmark is. NuSMV experiment results
are summarized in Table 3.

It is noticeable that verification module can eas-
ily verify small systems such as asynchronous arbiter,
asynchronous selector and 2-cell DME in extremely
short time (less than one second) using either general
strategy or novel strategy.

For verifying 6-cell DME benchmark, the general
strategy mode required more than 7 million BDD



A Novel Strategy for Formal Verification of Asynchronous Circuit Design in PAiD tool 71

Table 3: Experiment on running NuSMV.

N
Running time (s) No. of BDD nodes
General Novel General Novel
strategy strategy strategy strategy

Asynchronous Arbiter
0.02 - 20,234 -

Asynchronous Selector
0.07 - 140,211 -

Distributed Mutual Exclusion
2 cells 0.22 0.10 614,474 392,800
4 cells 2.03 0.62 1,449,572 1,729,723
6 cells 49.82 0.50 7,585,691 1,565,183
8 cells Time out 0.99 - 1,370,241
Asynchronous Pipelined FIR Filter
2-tap 141.22 4.28 21,081,300 744,715
3-tap Time out 154.99 - 3 ,404,546

nodes; however, only about 2 minutes are needed for
verifying its property.

Fig.17: Comparison of NuSMV running time of two
verifying strategies.

Table 3 also contains two situations that the state
space explosion occurs when applying general strat-
egy. These two complicated case studies are 8-cell
DME and 3-tap FIR filter. NuSMV running time is
marked as ”Time out” to indicate that verifying pro-
cess cannot finish in given expecting time. This time
is pre-set by 4 hours.

The number in Table 3 clearly proves the genius of
novel verifying strategy. It obviously helps reduce the
number of BDD nodes in every case study except for
4-cell DME. Moreover, it makes NuSMV run signifi-
cantly faster. For example, the 6-cell DME requires
less than one minute to be verified and less than 5 sec-
onds is taken to verify the 2-tap FIR filter. In case
of 4-cell DME, although it requires more BDD nodes
when applying novel strategy mode, the running time
is indeed much smaller. This abnormal case will be
investigated more in the near future.

It is also absolutely astonishing that the novel
strategy can handle the two complicated situations
that general mode cannot. In fact, it only took one
second to verify the 8-cell DME and 3 minutes for
3-tap FIR filter. The comparison of NuSMV running

time of two verifying strategies is illustrated clearly
by the graph in Fig. 17.

In addition, by using Novel verification strategy,
the BDD nodes are reduced substantially - 1.4 million
nodes for 8-cell DME and 3.5 million nodes for 3-tap
FIR filter. Detailed comparison of BDD node of two
strategies is shown by the graph in Fig. 18.

Fig.18: Comparison of BDD node in two verifying
strategies.

6. CONCLUSION

This paper already described PAiD tool for de-
signing and synthesizing asynchronous circuits. The
symbolic model checking based verification module is
also presented. Some case studies have been exam-
ined and proven the feasibility of this approach in
asynchronous circuit verification.

The novel verifying strategy is represented and an-
alyzed. The benchmarks have proved its great capac-
ity to enhance the performance of NuSMV. This also
makes the PAiD tool in general and verification mod-
ule in specific more reliable.

However, refer to Table 3 the progress of running
time is faster than that of BDD nodes. Hence, in
order to apply this verification method in large-scale
circuits, future researches need to focus on control-
ling the number of BDD nodes. The novel verifying
strategy could be a very good approach to deal with
this challenge.

References

[1] A. Bink, and R. York, “ARM996HS, the first
licensable, clockless 32-bit processor core,” IEEE
Micro, 2007.

[2] A. Cimatti, E. M. Clarke, F. Giunchiglia,
M. Roveri, “NuSMV: a new symbolic model
checker,” International Journal on Software
Tools for Technology Transfer 2.4 (2000),pp.
410-425, 2000.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, F.
Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani
and A. Tacchella, “NuSMV 2: An OpenSource



72 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.9, NO.1 May 2015

Tool for Symbolic Model Checking,” In Proceed-
ing of International Conference on Computer-
Aided Verification (CAV 2002). Copenhagen,
Denmark, July 27-31, 2002.

[4] A. Davis, and S. M. Nowick, An introduction to
asynchronous circuit design. The Encyclopedia
of Computer Science and Technology 38, 1997.

[5] A. J. Martin, “Distributed mutual exclusion on
a ring of processes,” Science of Computer Pro-
gramming, pp. 256-276, 1985.

[6] Alain J. Martin, “A synthesis method for delay-
insensitive VLSI circuits,” Invited paper, Formal
Methods for VLSI Design, ed. J. Straunstrup,
pp. 237-283, Elsevier, 1990.

[7] A.V. Dinh-Duc et al. - TAST CAD Tools,
Proc. ACiDWG workshop, Germany, 2002. See
also TIMA internal report ISRN:TIMA-RR-
02/07/01FR, http://tima.imag.fr/cis.

[8] A. V. Dinh-Duc, L. Fesquet, and M. Renaudin,
“A New Language-based Approach for Specifi-
cation of Asynchronous Systems,” Proc. 3rd Int.
Conf. in CS: Research, Innovation and Vision of
the Future (RIVF), pp.224-229, 2005.

[9] A-V. Dinh-Duc, “PAiD-A Novel Framework for
Design and Simulation of Asynchronous Cir-
cuits,” Journal of Science and Technology De-
velopment, Vol. 14, No. K2, ISSN 1859-0128, pp.
37-45, 2011.

[10] C. A. R. Hoare, “Communicating sequential pro-
cesses,” Communications of the ACM 21.8, pp.
666-677, 1978.

[11] D. Cyrluk, S. Rajan, N. Shankar and M. K.
Srivas, “Effective theorem proving for hardware
verification,” Theorem Provers in Circuit De-
sign, Springer Berlin Heidelberg, 1995.

[12] D. L. Dill, and E. M. Clarke, “Automatic Verifi-
cation of Asynchronous Circuits Using Temporal
Logic,” Michael Yoeli (Ed.), Formal Verification
of Hardware Designs, IEEE CS, 1991, pp. 176-
182.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled,
Model Checking, The MIT Press, 1999.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith, “Counterexample-Guided Abstraction
Refinement,” CAV’00, LNCS, vol. 1855, pp. 154-
169, 2000.

[15] H. H. Tran, T. L. Ho, and A.V. Dinh-Duc,
“PETRI-DFG - an intermediate representation
of asynchronous circuits,” Proc. 10th Conf. on
Science and Technology, Vietnam, 2007.

[16] H. van Gageldonk, K. van Berkel, A. Peeter,
D. Baumann, D. Gloor, and G. Stegmann,
“An asynchronous low-power 80C51 microcon-
troller,” Proc. Int Symp. on Advanced Research
in Async. Circuits and Systems, pp. 96-107,
1998.

[17] J. L. Peterson, “Petri net theory and the model-
ing of systems.” (1981).

[18] J. R. Burch, E. M. Clarke, K. L. McMillan, and
D. L. Dill, “Sequential circuit verification us-
ing symbolic model checking,” Design Automa-
tion Conference, Proceedings., 27th ACM/IEEE.
IEEE, 1990.

[19] Joseph Rodrigues, K R Pai, Lucy J Gudino,
“Synthesis of Linear Phase Sharp Transition FIR
Digital Filter”, ECTI Transactions on Com-
puter and Information Technology (ECTI-CIT),
pp.96-99, Vol.1, No. 2, 2005.

[20] L. Nguyen-Thanh, K. P. Phan, and A.V.
Dinh-Duc, “Behavior-Level Simulation of Asyn-
chronous Circuits”, Proc. Int. Workshop on Ad-
vanced Computing and Applications (ACOMP),
pp. 80–85, 2007.

[21] M. Renaudin, P. Vivet, and F. Robin, “ASPRO-
216: a standard-cell QDI 16-bit RISC asyn-
chronous microprocessor,” Advanced Research
in Asynchronous Circuits and Systems, 1998.
Proceedings. 1998 Fourth International Sympo-
sium on. IEEE, 1998.

[22] McMillan, L. Kenneth, “Symbolic model check-
ing,” Springer US, 1993.

[23] O. Roig, J. Cortadella, and E. Pastor, “Verifi-
cation of Asynchronous Circuits by BDD-based
Model Checking of Petri Nets,” Proc. 16th Int.
Conf. on App. and Theory of Petri Nets, Italia,
pp. 374-391, 1995.

[24] P. Camurati and P. Paol, “Formal verification of
hardware correctness: Introduction and survey
of current research,” Computer 21.7, pp. 8-19,
1988.

[25] Q. C. Pham, T. N. Nguyen-Vu, A.V. Dinh-Duc,
and H. A. Pham, “Placement and Routing Algo-
rithms for Asynchronous Logic Circuits,” Proc.
Int. Workshop on Advanced Computing and Ap-
plications (ACOMP), pp. 178-186, 2007.

[26] T. H. Bui, and A. Nymeyer, “Formal Verifica-
tion Based on Guided Random Walks,” Proc.
IFM’2009, pp.72-87.

[27] T.H. Bui, A-V. Dinh-Duc, B.D. Ho, T.T.
Nguyen, “Towards a verification approach for
asynchronous circuits,” J. of Sci. & Tech., vol.
49, no. 4A, pp. 178-182, 2011.

[28] T.H. Bui, A-V. Dinh-Duc, T.T. Nguyen, ”En-
coding PN-DFG in NuSMV for Verifying Asyn-
chronous Circuits,” SEATUC 2012, Thailand.

[29] T. H. Dam-Thi, V. H. Bui, and A. V.
Dinh-Duc, “Automatic Technology Mapping for
Quasi Delay-Insensitive (QDI) Asynchronous
Circuits,” Proc. Int. Workshop on Advanced
Computing and Applications (ACOMP), 2007,
pp. 23-32.

[30] T. T. Nguyen, K.-N. Le-Huu, T. H. Bui and
A.-V. Dinh-Duc, “A New Approach and Tool
in Verifying Asynchronous Circuits,” The Inter-
national Conference on Advanced Technologies



A Novel Strategy for Formal Verification of Asynchronous Circuit Design in PAiD tool 73

for Communications (ATC), Hanoi - Viêt Nam,
2012.

[31] W. W. Plummer, “Asynchronous arbiters,”
Computers, IEEE Transactions on 100.1 (1972):
37-42.R.B. Standler, Protection of Electronic
Circuits from Overvoltages, John Wiley and
Sons, Inc., New York, 1989, ch. 5.

Tin Thien Nguyen has been a lecturer
at Faculty of Computer Science and En-
gineering (CSE), University of Technol-
ogy - Vietnam National University at Ho
Chi Minh City (HCMUT) since 2012.
He received the MSc. degree in Com-
puter Science in 2014. His research in-
terests include Digital Signal Processor,
Embedded System, Asynchronous Cir-
cuit Design, and Image Processing.

Khoi-Nguyen LE-HUU has been
with the Faculty of Computer Engineer-
ing, University of Information Technol-
ogy - Vietnam National University Ho
Chi Minh City as Lecturer and Research
Coordinator since 2013. He is also a
former assistant lecturer at Faculty of
Computer Science and Engineering, Ho
Chi Minh City University of Technology
(HCMUT) where he received the BEng.
(Honor Program) & MEng. degrees in

Computer Engineering in 2012 and 2014, respectively. His re-
search interests include Multi-core/Multi-Issue Digital Signal
Processor, Energy Harvesting Wireless Sensor Networks, Asyn-
chronous Circuit Design, and Super-Resolution based Image
Processing. Currently, he also takes role as Coordinator of the
UIT-VLSI Design group, Computer Engineering Faculty. He
has been an IEEE member since 2013.

Thang H. Bui received the B.E.
(1997) degree in computer engineer-
ing from Vietnam National University-
HCMC University of Technology, M.E.
(2001) degree in computer engineer-
ing from Asian Institute of Technology,
Thailand, and PhD (2010) degree in
computer science from New South Wales
University, Australia. He is a Lecturer,
Faculty of Computer Science and En-
gineering, Vietnam National University-

HCMC University of Technology. His current interests include
information systems, formal methods, especially model check-
ing.

Anh-Vu Dinh-Duc is an associate pro-
fessor at the University of Information
Technology - Vietnam National Univer-
sity at Ho Chi Minh City where he has
served as Vice-Rector, R&D and Ex-
ternal Relations since 2012. He also
leads the UIT-VLSI Design group at the
Faculty of Computer Engineering. His
research interests include Design Au-
tomation of Embedded Systems, Hard-
ware/Software Verification, VLSI CAD,

and Reconfigurable Architectures. Dr. Anh-Vu Dinh-Duc
received the Master and Ph.D. degrees in Microelectronics
from the Institut National Polytechnique de Grenoble (INPG),
France, in 1998 and in 2003, respectively. Previously, he served
as Vice Dean, Faculty of Computer Science and Engineer-
ing, Ho Chi Minh City University of Technology (HCMUT),
Vietnam. Dr. Anh-Vu Dinh-Duc currently serves as a pro-
gram/organizing committee member of several ACM and IEEE
conferences. He is a member of the IEEE.


