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ABSTRACT
Parametric algorithms for the estimation of

rapidly-varying Carrier Frequency Offset (CFO) usu-
ally employ pilot symbols multiplexed with the data
transmission. As the CFO variation rate increases so
has to increase the density of pilot symbols transmit-
ted, thus impairing the bandwidth efficiency. In order
to reduce the number of pilot symbols used in the es-
timation of rapidly-varying CFO it was proposed to
use a truncated Taylors series to predict the CFO,
where the derivatives up to order d-1 are recursively
estimated with a d-order Kalman filter (KF). We pro-
pose to compare the performance of a fourth-order
KF predictor in the most popular block transmission
systems: Orthogonal Frequency Division Multiplex-
ing (OFDM) and Single Carrier Frequency-Domain
Equalization (SC-FDE).

Simulating different transmission scenarios, e.g.,
channel coding and spatial diversity, our results show
that for static multipath fading channels the proposed
receiver for the SC-FDE scheme exhibits better Bit
Error Rate (BER) performance than that of OFDM.

Keywords: Carrier frequency offset, Kalman fil-
ter, orthogonal frequency division multiplexing, sin-
gle carrier frequency-domain equalization.

1. INTRODUCTION

Future wireless systems will support ever increas-
ing data rates. Presently Orthogonal Frequency
Division Multiplexing (OFDM) and Single Carrier
Frequency-Domain Equalization (SC-FDE) transmis-
sion schemes are presented as valid solutions to sup-
port future applications. OFDM and SC-FDE can
cope with highly dispersive channels without requir-
ing complex receiver structures [1, 2]. In order to
prevent Inter-Symbol Interference (ISI), which oc-
curs in multipath channels, a guard interval is added
by extending the signal with a Cyclic Prefix (CP).
This guard interval has to be larger than the over-
all Channel Impulse Response (CIR) and, in order to
maintain bandwidth efficiency, it should be a small
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fraction of the total symbol duration. This leads to
longer symbols intervals which the characteristics of
the channelare almost certain to vary. And, as fre-
quency errors can not exceed a small fraction of the
inverse of the total symbol duration, we have that
block transmission is very sensitive to Carrier Fre-
quency Offset (CFO). One source of CFO is the fre-
quency mismatch between the oscillators at the trans-
mitter and receiver. Another possible source of CFO
is the Doppler frequency shift caused by relative mo-
tion between the transmitter and the receiver. CFO
estimation becomes more challenging in a Time Di-
vision Multiple Access (TDMA) scheme where the
non-continuity of the users time-slots makes the use
of previous estimates less helpful. There are two ba-
sic approaches for CFO estimation (see [3] and ref-
erences within): using pilot symbols to extract the
carrier frequency and phase of the received signal; or
deriving the carrier frequency directly from the mod-
ulated signal, usually called a blind scheme. The for-
mer option will always require additional bandwidth
consumption. Alternatively, in SC-FDE schemes, dif-
ferentially encoded transmission proved to be robust
to the presence of CFO.

There are various data-aided CFO estimators de-
scribed in the literature for OFDM schemes. In [4]
Moose proposed a Maximum-Likelihood (ML) CFO
estimator, based on the use of two identical and con-
secutive symbols, with a frequency acquisition range
±1/(2T), where T is the “useful” symbol duration.
This result was later extended in [5]. Morelli and
Mengalli proposed in [6] a estimator based on the Best
Linear Unbiased Estimator (BLUE) principle with
the use of only one pilot symbol having L > 2 identi-
cal parts and allowing a frequency aquisition range of
±L/(2T). When dealing with rapidly-varying CFO,
a situation likely to occur in mobile telecommunica-
tions, the estimates are obtained at the pilot symbols
and predicted at the data symbols. In [7], a states-
pace solution was devised, displaying overall superior
results to those presented by conventional linear al-
gorithms.

In this article we propose comparing the OFDM
system with the SC-FDE system when resorting to a
state-space estimation of rapidly-varying CFO. Since
channel coding is important in OFDM systems [8],
leading to a very high coding gain, especially if soft
decision decoding is applied, we compare both OFDM
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and SC-FDE systems under these conditions.
This paper is organized as follows: in sec. 1 we

introduce this paper; in sec. 2 we characterize the
proposed systems; in sec. 3 we present the statespace
solution for the CFO estimation problem; in sec. 4
we describe the structure of the proposed receivers
for OFDM and SC-FDE schemes; in sec. 5 we an-
alyze the obtained performance results; and sec. 6
concludes this paper.

2. SYSTEM CHARACTERIZATION

In Fig. 1 we sketch the basic OFDM transmis-
sion scheme. The information bits to be transmit-
ted are mapped into a constellation, e.g., QPSK, ac-
cording to a valid rule, e.g., Gray coding. The re-
sulting frequency-domain signal is converted to time-
domain through the Inverse Discrete Fourier Trans-
form (IDFT) operation, effectively performed by the
Inverse Fast Fourier Transform (IFFT) algorithm.
We add a CP to the time domain signal and send
it through the channel. In the receiver, after the
CP removal, the time-domain signal is converted
to frequency-domain through the Discrete Fourier
Transform (DFT) operation performed by the Fast
Fourier Transform (FFT) algorithm. We proceed
with the frequency-domain equalization and, after
the corresponding demapping, we obtain the received
data bits.

The block diagram of the basic SC-FDE transmis-
sion scheme is depicted in Fig. 2. Comparing Fig. 2
with Fig. 1, we can see that both OFDM and SCFDE
systems are very similar. The blocks required for its
implementation are the same; the main difference be-
ing that for the SC-FDE case the IDFT block is found
not in the transmitter side but on the receiver. So,
the SC-FDE scheme and the OFDM scheme presents
the same complexity [2].

Let p ≥ 2 be the period of the pilot symbols in
symbol intervals. The CFO has to be predicted at the
data symbols using the estimates obtained at the pilot
symbols. In [7], a state-space approach was proposed
whereby the CFO is modeled as the first component
of a d-dimensional state vector which is recursively
estimated by a Kalman Filter (KF). Let v(t) = f0T
stand for the (symbol duration) normalized CFO. Us-
ing the truncated Taylor series we approximate v at
t + τ , with τ > 0, by
v(t+τ) ≈ v(t)+τ(t)+(τ2/2)v̈(t) + ...

+[τd−1/(d− 1)!]vd−1(t). (1)
and resort to the KF to estimate v(t) and the deriva-
tives (t), (t),. . . .

Consider the time-domain size-N block of received
data symbols {ýn;n = 0, 1, ...,N− 1} in the presence
of CFO

ýn = exp

[
j

(
2πnv

N
+ β0

)]
ωn + nn. (2)

with v being normalized (to the symbol duration T)
time-varying CFO and β0 is the unknown origin phase
which can be coped with through pilot symbols or dif-
ferential encoding techniques. The quantity nn is zero
mean gaussian noise with variance σ2

n = E[|nn|2],and

ωn = IDFT {S
k
Hk} . (3)

where Hk is the channel frequency response, and
IDFT{.} means the Inverse Discrete Fourier Trans-
form operation. In (3), for OFDM systems,
{Sk; k = 0, 1, ...,N− 1} are the frequency domain
data symbols chosen from a given constellation, e.g.,
QPSK, and, for SC systems, {Sk; k = 0, 1, ...,N− 1}
= DFT {sn;n = 0, 1, ...,N− 1}, where {sn;n =
0, 1, ...,N− 1 are the time domain data symbols cho-
sen from a given constellation, and DFT{.}means the
Discrete Fourier Transform operation. The Signal-to-
Noise Ratio is defined as SNR = σ2

ω/σ2
n where σ2

n =
E [| nn |2].

As in [6], the pilot symbols consist of a set of
pseudo-random values {Sk; k = 0, 1, ...,N− 1} with
|Sk| =

√
L for (k mod L) = 0, and |Sk| = 0 for (k

mod L) 6= 0, where L = 2, 4, 8, . . ., and (i mod M)
stands for the integer remainder of the division of i
by M. For the data symbols we admit, with no loss
of generality, that {|Sk| = 1; k = 0, 1, ...,N− 1}.

The samples yn,l are separated into two streams:
the pilot symbols, corresponding to (l mod p) = 0 and
the data symbols, corresponding to (l mod p) = 1, . .
. , p - 1, for the lth received burst. The arrangement
of the pilot symbols is sketched in Fig. 3.

The pilot symbols are split into L sections of Mp

samples, [y(m−1)Mp
, ..., ymMp−1],m = 1, ...,L, where

we drop the burst index l for simplification.
Consider now the correlation between subsets[

y0, ..., yN−mMp−1

]
and

[
ymMp

, ..., yN−1

]
as

R(m) =
1

N−mMp

N−1∑
n=mMp

yny
∗
n−mMp

,

m = 1,...,L-1. (4)

The case 2m = L corresponds to the Schmidl and
Cox algorithm.

For nn = 0 it can be easily shown that

v =
L

2πm
arg {R(m)} . (5)

In the presence of weak noise we can write

R(m) = D exp

(
j

2πnv

L

)
[1 + γ(m)] . (6)
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where D is a real quantity depending on the chan-
nel response and γ(m) is a complex quantity that
depends on the channel noise, such that |γ(m)| 〈〈 1,
with high probability [6]. Thus, a normalized CFO
estimate can be obtained as

ṽ =
L

2πm
arg {R(m)} = v +

L

2πm
γI(m). (7)

(a)

(b)

Fig.1: Basic OFDM scheme:(a) transmitter and channel; (b) receiver.

(a)

(b)

Fig.2: Basic SC-FDE scheme:(a) transmitter and channel; (b) receiver.

Fig.3: Arrangement of the pilot symbols

γI(m) is the imaginary part of γ(m). Simulations have
shown that for N � 1, γI(m) is approximately gaus-
sian. The acquisition range of the estimator (7) is

|ν̃| ≤ L/(2m). (8)

For L constant, the range depends on m, and is max-
imized for m = 1 with |ν̃| ≤ L/2.

Reference [6] describes how to estimate ν based
on the BLUE principle. However, for rapidly-varying
CFOs the percentage of pilot symbols has to be high,
thus impairing the bandwidth efficiency. In the next
section we propose to use the estimates (7) as the in-
put of a KF that filters ν̃ at the pilot symbols and
predicts ν̂ at the data symbols for the OFDM and
SC-FDE schemes.

3 STATE-SPACE SOLUTION

Assume that the CFO can be well extrapolated, at
the data symbols, using the Taylor series in (1) with
terms up to the third derivative, i.e., d = 4. Let the
continuous-time state vector X(t) = [x1(t) · · ·x4(t)]T,

with x1(t) = ν(t) and xg = ν(g−1)(t), g = 2, . . . , d.
The dynamics equation is



ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)


 =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




︸ ︷︷ ︸
F




x1(t)
x2(t)
x3(t)
x4(t)


+




0
0
0
1




︸ ︷︷ ︸
Γ

w(t),

(9)
where w(t) is zero mean gaussian noise with power
spectral density Gw(f) = qc.

The discrete-time state vector for a discretization
interval ∆ = p, at the pilot symbol i, is Xi(t) =
[x1,i(t) · · ·x4,i(t)]T.

The corresponding dynamics equation is

Xi+p = Φ(∆)Xi + Γwi, i = 0, p, 2p, . . . (10)

where the state transition matrix is

Φ(∆) = eF∆ =




1 ∆ ∆2/2 ∆3/6
0 1 ∆ ∆2/2
0 0 1 ∆
0 0 0 1


 , (11)

and {wi} is a zero mean white gaussian sequence with
variance q = qc∆.

The observations model is zi = ν̃i with

zi =
[

1 0 0 0
]

︸ ︷︷ ︸
S

Xi + υi, (12)

where {υi} is a zero-mean white gaussian sequence un-
correlated with {wi} and with variance r, that quan-
tifies the effect of noise in (7).

The KF associated with (9)-(12) estimates recur-
sively the state vector Xi. The following equations
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(11)

and wi is a zero mean white gaussian sequence with
variance q = qc∆.

The observations model is zi = ṽi with

zi = [ 1 0 0 0]︸ ︷︷ ︸
s

Xi + vi (12)

where vi is a zero-mean white gaussian sequence
uncorrelated with wi and with variance r, that quan-
tifies the effect of noise in (7). The KF associated
with (9)-(12) estimates recursively the state vector
Xi. The following equations are used, with X̂(i |i− p )
and X̂(i |i ) denoting respectively the p-step predic-
tion and filtering estimates at iteration i [8].

•prediction step

X̂(i
∣∣∣i− p) = Φ(∆)X̂(i-p |i-p);

P(i
∣∣i− p) = Φ(∆)P(i-p

∣∣i-p)ΦT (∆) + qΓΓT . (13)

where (P(i|i− p) and P(i |i ) are respectively the p-
step prediction and filtering covariance matrices at
iterationi.

•filtering step

X̂(i
∣∣i) = X̂(i

∣∣i− p) + Gi

[
zi − SX̂(i |i-p)] ;

P(i|i) = P(i |i-p)−GiSP(i |i-p). (14)

where Gi = P(i
∣∣∣i-p)ST

[
SP(i

∣∣i-p)ST + r
]−1

is the
Kalman gain with S being defined in (12).

The KF is initialized at iteration i = 0 by assigning
values to X̂(0 |-p) and P(0 |-p)

At the pilot symbol i the CFO is estimated
as v̂i = SX̂(i |i) . At the data symbol i + h,h
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Fig.2: Basic SC-FDE scheme:(a) transmitter and channel; (b) receiver.
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Xi+p = Φ(∆)Xi + Γwi, i = 0, p, 2p, . . . (10)

where the state transition matrix is

Φ(∆) = eF∆ =




1 ∆ ∆2/2 ∆3/6
0 1 ∆ ∆2/2
0 0 1 ∆
0 0 0 1


 , (11)

and {wi} is a zero mean white gaussian sequence with
variance q = qc∆.

The observations model is zi = ν̃i with

zi =
[

1 0 0 0
]

︸ ︷︷ ︸
S

Xi + υi, (12)

where {υi} is a zero-mean white gaussian sequence un-
correlated with {wi} and with variance r, that quan-
tifies the effect of noise in (7).

The KF associated with (9)-(12) estimates recur-
sively the state vector Xi. The following equations

Fig.2: Basic SC-FDE scheme:(a) transmitter and channel; (b) receiver.

= 1,...,p - 1, the CFO is estimated (predicted)
as (i+h)=S(i+h|i) = SΦ(h) (i|i) . Using (10)- (12),
yields

v̂(i+h) = x1,i + hx2,i + (h2/2)x̂3,i+

(h3/6)x̂4,i,h = o, ..., p− 1. (15)

Equation (15) is compatible with (1) provided that
τ = h and v̂(a)(t) = x̂a+1,i, a = 0, ...3.

The computational effort required by the KF is
small and can be further reduced by noting that the
propagation of the covariances matrices, P(i |i-p) and
P(i |i) , is independent of the input data allowing its
computation to be carried out off-line. In addition,
a slightly suboptimal algorithm can be used where
P(i |i-p) and P(i |i) are replaced with their steadys-
tate (i →∞) counterparts.

4. RECEIVERS

The proposed receiver schemes are sketched in
Fig. 4 where perfect symbol synchronization is
assumed. The received time domain samples{
ýn,l;n = 0, 1, ...,N− 1

}
(l = 1, 2, ...) are separated

into pilot and data stream which are processed sep-
arately. The processing block of the pilot symbols
consists of a CFO estimator corresponding to (4) and
(7). The CFO prediction for (l mod p) 6= 0 is accom-
plished by the KF. The samples of the data stream
are phase de-rotated according to

yn,l = ý
n,l

exp

(
−j2π

nv̂l

N

)
. (16)

The DFT is then applied to produce the frequency-
domain samples

{
Y

(j)
k ; k = 0, 1, ...,N− 1

}
where we

drop the l index term, for simplification, and intro-
duce the index for the jth diversity branch, admitting
a diversity order J. For the OFDM scheme we use a
zero-forcing equalization procedure that yields

S̃k =

∑J
j=1 Y

(j)
k

(
H

(j)
k

)∗
∑J

j=1

∣∣∣H(j)
k

∣∣∣2 . (17)

The SC-FDE receiver employs a joint carrier synchro-
nization and equalization procedure which combines
IB-DFE (Iterative Block Decision Feedback Equaliza-
tion) and a post-equalization carrier synchronization
scheme as presented in [9]. Within each iteration
of the equalizer we perform a decision-directed fre-
quency offset estimation as depicted in Fig. 5. For
a given iteration i, the frequency-domain samples at
the output of the IB-DFE are given by

S̃
(i)
k =

j∑
j=1

F
(j,i)
k Y

(j)
k − B

(i)
k Ŝi-1

k . (18)

where
{

F
(j,i)
k ; k = 0, 1, ...,N− 1

}
(j = 1, 2, ..., j) and

{Bk; k = 0, 1, ...,N− 1} represent, respectively, the
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feedforward and feedback coefficients.
{

Ŝ
(i-1)

k ; k = 0, 1,

. . . ,N - 1represents the DFT of the data estimates{
ŝ(i-1)n ;n = 0, 1, ...,N− 1

}
that are obtained from the

time-domain samples present at the equalizer output
in the previous iteration

{
s̃(i-1)n ;n = 0, 1, ...,N− 1

}
=

IDFT
{

S̃
(i-1)

k ; k = 0, 1, ...,N− 1
}

. The optimum values

for the feedforward coefficients F
(j,i)
k are given by [10]

F
(j,i)
k =

(
H

(j)
k

)∗
α−1 + [1− (ρ(i-1))]2

∑J
j́=1

∣∣∣H(́j)
k

∣∣∣2
j=1, 2, . . . , J. (19)

where α = E[Sk]/E[Nk] with {Nk; k = 0, 1, ...,N− 1}
= DFTf {nn;n = 0, 1, ...,N-1} and the correlation co-
efficient ρ(i) is defined as

ρ(i) =
E[sn(ŝ(i)n )∗]

Es
. (20)

with Es = E[|sn|2] representing the mean symbol en-
ergy. Notice that, for the first iteration (i = 0), there
is no information about Sk and the correlation is zero,
corresponding to linear FDE.

The optimum values for B
(i)
k are given by

B
(i)
k = ρ(i-1)

 J∑
j=1

Fi,j
k H

(j)
k − γ(i)

 . (21)

The quantity γ(i) can be seen as the global average
of the channel frequency response after the J feedfor-
ward filter outputs are combined, i.e.,

γ(i) =
1
N

N-1∑
k=0

J∑
j=0

F
(j,i)
k H

(j,i)
k . (22)

The received symbol estimates are obtained through
hard-decisions. For the OFDM scheme this is done
in frequency-domain

Ŝk = HD
(
S̃k

)
. (23)

where HD(.) = sign(<{.}) + jsign(={.}) is the hard-
decisions operation. For SC-FDE scheme the hardde-
cisions are done in time-domain

ŝn = HD (s̃n) . (24)

where {s̃n;n = 0, 1, ..., N − 1} = IDFTfS̃k; k =
0, 1, ..., N − 1.

We can define the remaining offset present in yn

after the first CFO compensation (16) as being

δv = v− v̂. (25)

For the SC-FDE receiver we resort to a decisiondi-
rected CFO estimator in order to obtain a δv estimate

δ̂v =
N

2πMdT
arg {ξ} . (26)

ξ =
N−Md−1∑

n=0

yn + Mdy
∗
n

sn + Mds∗n
. (27)

for Md > N/2.
The post-equalization phase rotation embedded in

the IB-DFE is given by

ŝ(i)
n = ˆ́s(i)n exp

(
−j2π

nδ̂v

N

)
. (28)

5. PERFORMANCE RESULTS

In order to compare the performance of the
SCFDE and the OFDM schemes we consider QPSK
modulated bursts with N = 1024 symbols transmit-
ted over a strongly frequency-selective Rayleigh fad-
ing channel. We adopt the power delay profile type
C within HIPERLAN/2, with uncorrelated Rayleigh
fading on the different paths. An ideal coherent de-
tection, with perfect synchronization and channel es-
timation, is assumed.

For simulation purposes, the normalized CFO is
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For simulation purposes, the normalized CFO is
modeled by a sinusoidal law

νl = νmax sin (2πl/U) , l = 0, 1, . . . (29)

where νmax is the maximum value of ν and U is the
period in symbol intervals.

The CFO that we assume present in our transmis-
sions largely exceeds 1/(2T ). Under these conditions,
conventional techniques for the CFO estimation are in-
effective. This precludes the comparison between the
proposed methods and non-recursive methods, since
the BER rate performances for the latter are catas-
trophic. We refer to [7] for a comparison between our
KF-based estimator with a non-recursive local estima-
tor, regarding OFDM schemes.

Throughout this section we do νmax = 1, U = 100
and divide the training symbols in L = 8 sections.
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We set the KF parameters to q = 10−3 and r = 1.
These parameters are slightly sub-optimal since the
optimum values depend on the SNR. Notice that the
amount of smoothing introduced by the KF can be
controlled through the ratio r/q. For the pilot-assisted
CFO estimator we do m = 1 and for decision-directed
CFO estimator we doMd = b2/3Nc, where bxc means
the larger integer that does not exceed x.

In Fig. 6 we plot the true CFO, the estimates pro-
vided by the KF and the estimates obtained combin-
ing the KF with the decision-directed estimator for the
time interval of 130 symbol intervals with SNR = 15
dB and p = 10. We can see that the estimates pro-
vided are able to track the true trajectory with only
small errors. It is also visible that the combined use
of a post-equalization decision-directed estimator pro-
vides increased accuracy. During the initial 3p sym-

Fig.6: Estimates of the true normalized CFO (dot-
ted line) obtained with the KF (dashed line) and the
KF combined with a decision-directed estimator (solid
line).
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Fig.4: The proposed receiver:(a) for OFDM schemes and (b) for SC-FDE schemes.

Fig.5: IB-DFE with CFO compensation.

The received symbol estimates are obtained through
hard-decisions. For the OFDM scheme this is done in
frequency-domain

Ŝk = HD(S̃k), (23)

where HD(·) = sign(<{·}) + jsign(={·}) is the hard-
decisions operation. For SC-FDE scheme the hard-
decisions are done in time-domain

ŝn = HD(s̃n), (24)

where {s̃n;n = 0, 1, . . . , N − 1} = IDFT{S̃k; k =
0, 1, . . . , N − 1}.

We can define the remaining offset present in yn

after the first CFO compensation (16) as being

δν = ν − ν̂. (25)

For the SC-FDE receiver we resort to a decision-
directed CFO estimator in order to obtain a δν es-
timate

δ̂ν =
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2πMdT
arg{ξ}, (26)

with

ξ =
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for Md > N/2.
The post-equalization phase rotation embedded in

the IB-DFE is given by
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5 PERFORMANCE RESULTS

In order to compare the performance of the SC-
FDE and the OFDM schemes we consider QPSK mod-
ulated bursts withN = 1024 symbols transmitted over
a strongly frequency-selective Rayleigh fading chan-
nel. We adopt the power delay profile type C within
HIPERLAN/2, with uncorrelated Rayleigh fading on
the different paths. An ideal coherent detection, with
perfect synchronization and channel estimation, is as-
sumed.
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where HD(·) = sign(<{·}) + jsign(={·}) is the hard-
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decisions are done in time-domain

ŝn = HD(s̃n), (24)
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We can define the remaining offset present in yn

after the first CFO compensation (16) as being

δν = ν − ν̂. (25)

For the SC-FDE receiver we resort to a decision-
directed CFO estimator in order to obtain a δν es-
timate
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2πMdT
arg{ξ}, (26)

with
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In order to compare the performance of the SC-
FDE and the OFDM schemes we consider QPSK mod-
ulated bursts withN = 1024 symbols transmitted over
a strongly frequency-selective Rayleigh fading chan-
nel. We adopt the power delay profile type C within
HIPERLAN/2, with uncorrelated Rayleigh fading on
the different paths. An ideal coherent detection, with
perfect synchronization and channel estimation, is as-
sumed.
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For simulation purposes, the normalized CFO is
modeled by a sinusoidal law

νl = νmax sin (2πl/U) , l = 0, 1, . . . (29)

where νmax is the maximum value of ν and U is the
period in symbol intervals.

The CFO that we assume present in our transmis-
sions largely exceeds 1/(2T ). Under these conditions,
conventional techniques for the CFO estimation are in-
effective. This precludes the comparison between the
proposed methods and non-recursive methods, since
the BER rate performances for the latter are catas-
trophic. We refer to [7] for a comparison between our
KF-based estimator with a non-recursive local estima-
tor, regarding OFDM schemes.

Throughout this section we do νmax = 1, U = 100
and divide the training symbols in L = 8 sections.
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We set the KF parameters to q = 10−3 and r = 1.
These parameters are slightly sub-optimal since the
optimum values depend on the SNR. Notice that the
amount of smoothing introduced by the KF can be
controlled through the ratio r/q. For the pilot-assisted
CFO estimator we do m = 1 and for decision-directed
CFO estimator we doMd = b2/3Nc, where bxc means
the larger integer that does not exceed x.

In Fig. 6 we plot the true CFO, the estimates pro-
vided by the KF and the estimates obtained combin-
ing the KF with the decision-directed estimator for the
time interval of 130 symbol intervals with SNR = 15
dB and p = 10. We can see that the estimates pro-
vided are able to track the true trajectory with only
small errors. It is also visible that the combined use
of a post-equalization decision-directed estimator pro-
vides increased accuracy. During the initial 3p sym-

Fig.7: Normalized mean squared errors for the CFO
estimation versus p.

modeled by a sinusoidal law

vl = vmaxsin (2πl/U) , l = 0, 1, ... (29)

where vmax is the maximum value of v and U is the
period in symbol intervals.

The CFO that we assume present in our transmis-

sions largely exceeds 1=(2T). Under these conditions,
conventional techniques for the CFO estimation are
ineffective. This precludes the comparison between
the proposed methods and non-recursive methods,
since the BER rate performances for the latter are
catastrophic. We refer to [7] for a comparison be-
tween our KF-based estimator with a non-recursive
local estimator, regarding OFDM schemes.

Throughout this section we do vmax = 1, U = 100
and divide the training symbols in L = 8 sections.

We set the KF parameters to q = 10−3 and r =
1. These parameters are slightly sub-optimal since
the optimum values depend on the SNR. Notice that
the amount of smoothing introduced by the KF can
be controlled through the ratio r/q. For the pilot-
assisted CFO estimator we do m = 1 and for decision-
directed CFO estimator we do Md = b2/3Nc, where
bxc means the larger integer that does not exceed x.

In Fig. 6 we plot the true CFO, the estimates pro-
vided by the KF and the estimates obtained combin-
ing the KF with the decision-directed estimator for
the time interval of 130 symbol intervals with SNR
= 15 dB and p = 10. We can see that the estimates
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KF combined with a decision-directed estimator (solid
line).
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For simulation purposes, the normalized CFO is
modeled by a sinusoidal law

νl = νmax sin (2πl/U) , l = 0, 1, . . . (29)

where νmax is the maximum value of ν and U is the
period in symbol intervals.

The CFO that we assume present in our transmis-
sions largely exceeds 1/(2T ). Under these conditions,
conventional techniques for the CFO estimation are in-
effective. This precludes the comparison between the
proposed methods and non-recursive methods, since
the BER rate performances for the latter are catas-
trophic. We refer to [7] for a comparison between our
KF-based estimator with a non-recursive local estima-
tor, regarding OFDM schemes.

Throughout this section we do νmax = 1, U = 100
and divide the training symbols in L = 8 sections.
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For simulation purposes, the normalized CFO is
modeled by a sinusoidal law

νl = νmax sin (2πl/U) , l = 0, 1, . . . (29)

where νmax is the maximum value of ν and U is the
period in symbol intervals.

The CFO that we assume present in our transmis-
sions largely exceeds 1/(2T ). Under these conditions,
conventional techniques for the CFO estimation are in-
effective. This precludes the comparison between the
proposed methods and non-recursive methods, since
the BER rate performances for the latter are catas-
trophic. We refer to [7] for a comparison between our
KF-based estimator with a non-recursive local estima-
tor, regarding OFDM schemes.

Throughout this section we do νmax = 1, U = 100
and divide the training symbols in L = 8 sections.
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Fig.9: Uncoded BER performance of the proposed
receivers. For comparison, we also depict the SC-FDE
and the OFDM performance with no CFO, i.e., ν = 0,
and the MFB.

We set the KF parameters to q = 10−3 and r = 1.
These parameters are slightly sub-optimal since the
optimum values depend on the SNR. Notice that the
amount of smoothing introduced by the KF can be
controlled through the ratio r/q. For the pilot-assisted
CFO estimator we do m = 1 and for decision-directed
CFO estimator we doMd = b2/3Nc, where bxc means
the larger integer that does not exceed x.

In Fig. 6 we plot the true CFO, the estimates pro-
vided by the KF and the estimates obtained combin-
ing the KF with the decision-directed estimator for the
time interval of 130 symbol intervals with SNR = 15
dB and p = 10. We can see that the estimates pro-
vided are able to track the true trajectory with only
small errors. It is also visible that the combined use
of a post-equalization decision-directed estimator pro-
vides increased accuracy. During the initial 3p sym-

Fig.9: Uncoded BER performance of the proposed
receivers. For comparison, we also depict the SC-
FDE and the OFDM performance with no CFO, i.e.,
v = 0, and the MFB.

provided are able to track the true trajectory with
only small errors. It is also visible that the combined
use of a post-equalization decision-directed estima-
tor provides increased accuracy. During the initial
3p symbols intervals the estimates x̂2,n and x̂4,n are
in convergence process and, thus, cannot be used for
prediction. Instead, a piecewise constant CFO esti-
mate is shown in that interval.

In Fig. 7 we present the CFO Normalized
Mean Squared Errors (NMSE), E

{
[v̂− v]2

}
and

E

{[
v̂ + δ̂v− v

]2}
, of the estimates provided by the

KF and the estimates obtained combining the KF
with the decisiondirected estimator, respectively, ver-
sus the prediction step p with SNR = 10 and 20
dB. As expected the NMSE increases with the pi-
lot symbol period. The combined use of the KF with
the decision-directed estimator for the SC-FDE re-
ceiver yelds estimates with a NMSE, roughly, up to
ten times smaller than the estimates provided solely
by the KF.

Fig. 8 displays the uncoded BER performance of
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Fig.10: Uncoded BER performance for the different
IB-DFE iterations with pilot symbol period p = 8. For
comparison, we also depict the performance with no
CFO, i.e., ν = 0, and the MFB.
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Fig.11: Uncoded BER performance of the proposed
receivers with diversity order J = 2. For comparison,
we also depict the performance with no CFO, i.e., ν =
0, and the MFB

bols intervals the estimates x̂2,n and x̂4,n are in conver-
gence process and, thus, cannot be used for prediction.
Instead, a piecewise constant CFO estimate is shown
in that interval.

In Fig. 7 we present the CFO Normalized Mean
Squared Errors (NMSE), E{[ν̂− ν]2} and E{[ν̂+ δ̂ν−
ν]2}, of the estimates provided by the KF and the es-
timates obtained combining the KF with the decision-
directed estimator, respectively, versus the prediction
step p with SNR = 10 and 20 dB. As expected the
NMSE increases with the pilot symbol period. The
combined use of the KF with the decision-directed es-
timator for the SC-FDE receiver yelds estimates with
a NMSE, roughly, up to ten times smaller than the
estimates provided solely by the KF.
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Fig.12: Coded BER performance of the proposed re-
ceivers. For comparison, we also depict the perfor-
mance with no CFO, i.e., ν = 0.

Fig. 8 displays the uncoded BER performance of
the proposed receivers for AWGN channels. The fol-
lowing period symbols were used: p = 4, 8, and 10,
which corresponds to 4%, 8%, 10% of the CFO rep-
etition period (U = 100). Since the guard interval is
much smaller than the useful symbol duration, we as-
sume that the SNR loss due to discarding the cyclic
prefix in the receiver is negligible. Both receivers have
the same performance and for p = 4 and 8 the curves
are near the bit error probability for QPSK transmis-
sions over AWGN channel (see the appendix for the
expression).

In Fig. 9 we plot the uncoded BER perfor-
mance, for the proposed receivers, in the presence
of static multipath fading. For comparison, we dis-
play the BER performance curve of the SC-FDE and
the OFDM schemes with no CFO, i.e., ν = 0. For
p = 4 and 8 we see that, for both SC-FDE and OFDM
schemes, the receivers performance is similar to that
expected in a no CFO situation. With p = 10 we see
that for larger Ēb/N0 there is an increasing perfor-
mance degradation regarding the no CFO situation.
It is important to note that this performance results
are closely linked to the model chosen for the CFO
variation. For larger pilot symbols periods, p, the
CFO variations will be harder to track and, for in-
creasing CFO variation rates, we will have increasing
performance degradation. Comparing the proposed
receivers performance for the current situation, we can
see that the SC-FDE schemes presents significantly
better results than that of OFDM. Furthermore, with
the use of the IB-DFE, the SC-FDE BER performance
can achieve results near the Matched Filter Bound
(MFB) (see the appendix for the expression).

In Fig. 10 we can observe the improved BER per-
formance obtained for the increasing iterations of the
IB-DFE with CFO compensation. For p = 8 we have

Fig.10: Uncoded BER performance for the different
IB-DFE iterations with pilot symbol period p = 8.
For comparison, we also depict the performance with
no CFO, i.e., v = 0, and the MFB.
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Fig.10: Uncoded BER performance for the different
IB-DFE iterations with pilot symbol period p = 8. For
comparison, we also depict the performance with no
CFO, i.e., ν = 0, and the MFB.
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Fig.11: Uncoded BER performance of the proposed
receivers with diversity order J = 2. For comparison,
we also depict the performance with no CFO, i.e., ν =
0, and the MFB

bols intervals the estimates x̂2,n and x̂4,n are in conver-
gence process and, thus, cannot be used for prediction.
Instead, a piecewise constant CFO estimate is shown
in that interval.

In Fig. 7 we present the CFO Normalized Mean
Squared Errors (NMSE), E{[ν̂− ν]2} and E{[ν̂+ δ̂ν−
ν]2}, of the estimates provided by the KF and the es-
timates obtained combining the KF with the decision-
directed estimator, respectively, versus the prediction
step p with SNR = 10 and 20 dB. As expected the
NMSE increases with the pilot symbol period. The
combined use of the KF with the decision-directed es-
timator for the SC-FDE receiver yelds estimates with
a NMSE, roughly, up to ten times smaller than the
estimates provided solely by the KF.
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Fig. 8 displays the uncoded BER performance of
the proposed receivers for AWGN channels. The fol-
lowing period symbols were used: p = 4, 8, and 10,
which corresponds to 4%, 8%, 10% of the CFO rep-
etition period (U = 100). Since the guard interval is
much smaller than the useful symbol duration, we as-
sume that the SNR loss due to discarding the cyclic
prefix in the receiver is negligible. Both receivers have
the same performance and for p = 4 and 8 the curves
are near the bit error probability for QPSK transmis-
sions over AWGN channel (see the appendix for the
expression).

In Fig. 9 we plot the uncoded BER perfor-
mance, for the proposed receivers, in the presence
of static multipath fading. For comparison, we dis-
play the BER performance curve of the SC-FDE and
the OFDM schemes with no CFO, i.e., ν = 0. For
p = 4 and 8 we see that, for both SC-FDE and OFDM
schemes, the receivers performance is similar to that
expected in a no CFO situation. With p = 10 we see
that for larger Ēb/N0 there is an increasing perfor-
mance degradation regarding the no CFO situation.
It is important to note that this performance results
are closely linked to the model chosen for the CFO
variation. For larger pilot symbols periods, p, the
CFO variations will be harder to track and, for in-
creasing CFO variation rates, we will have increasing
performance degradation. Comparing the proposed
receivers performance for the current situation, we can
see that the SC-FDE schemes presents significantly
better results than that of OFDM. Furthermore, with
the use of the IB-DFE, the SC-FDE BER performance
can achieve results near the Matched Filter Bound
(MFB) (see the appendix for the expression).

In Fig. 10 we can observe the improved BER per-
formance obtained for the increasing iterations of the
IB-DFE with CFO compensation. For p = 8 we have

Fig.11: Uncoded BER performance of the proposed
receivers with diversity order J = 2. For comparison,
we also depict the performance with no CFO, i.e., v
= 0, and the MFB.

the proposed receivers for AWGN channels. The fol-
lowing period symbols were used: p = 4; 8, and 10,
which corresponds to 4%, 8%, 10% of the CFO rep-
etition period (U = 100). Since the guard interval
is much smaller than the useful symbol duration, we
assume that the SNR loss due to discarding the cyclic
prefix in the receiver is negligible. Both receivers have
the same performance and for p = 4 and 8 the curves
are near the bit error probability for QPSK transmis-
sions over AWGN channel (see the appendix for the
expression).

In Fig. 9 we plot the uncoded BER performance,
for the proposed receivers, in the presence of static
multipath fading. For comparison, we display the
BER performance curve of the SC-FDE and the
OFDM schemes with no CFO, i.e., v = 0. For p
= 4 and 8 we see that, for both SC-FDE and OFDM
schemes, the receivers performance is similar to that
expected in a no CFO situation. With p = 10 we see
that for larger B̄b/No there is an increasing perfor-
mance degradation regarding the no CFO situation.
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It is important to note that this performance results
are closely linked to the model chosen for the CFO
variation. For larger pilot symbols periods, p, the
CFO variations will be harder to track and, for in-
creasing CFO variation rates, we will have increasing
performance degradation. Comparing the proposed
receivers performance for the current situation, we
can see that the SC-FDE schemes presents signifi-
cantly better results than that of OFDM. Further-
more, with the use of the IB-DFE, the SC-FDE BER
performance can achieve results near the Matched
Filter Bound (MFB) (see the appendix for the ex-
pression).

In Fig. 10 we can observe the improved BER per-
formance obtained for the increasing iterations of the
IB-DFE with CFO compensation. For p = 8 we have
for the 4th iteration results near the MFB. For com-
parison, we also plot the SC-FDE performance with
no CFO.

The uncoded BER performance of the receivers
with two diversity branches, in the presence of static
multipath fading, is displayed in Fig. 11. The use of
diversity led to significant performance improvement
in both schemes. Although OFDM schemes with p =
4 and 8 have curves near to those obtained in a no
CFO situation, we conclude that SC-FDE schemes
display better results.

Fig. 12 depicts the coded BER performance of the
proposed receivers in the presence of static multipath
fading. We use a 64 states error correcting convo-
lutional code with 1/2 coding rate on both schemes.
For comparison, the curves obtained in a no CFO
situation are also represented. We observe improved
performance on both receivers when compared with
the uncoded transmission. Also, for the different val-
ues of p the SC-FDE receiver have some gain over the
OFDM.

6. CONCLUSIONS

We compared two receiver structures with CFO
state-space estimation and compensation for both
OFDM and SC-FDE schemes. For both schemes the
KF offers accurate estimates of the rapidly-varying
CFO. For the SC-FDE schemes, we provided an even
more accurate CFO estimate by combining the KF
with a post-equalization decision-directed CFO esti-
mator. For the transmission scenarios over a static
multipath fading channel simulated in this paper, the
proposed receiver for SC-FDE exhibits better BER
performance than that of OFDM. For AWGN chan-
nels the receivers perform equally.

Notice that, the used CFO model is not the best
for the KF. In case the CFO has a good polynomial
approximation the KF produces better estimates even
if the CFO strongly varies between pilots, especially
if the KF dimension is adequate.

APPENDICES
The bit error probability for QPSK transmissions
over AWGN channel with Gray coding is given by [11]

PQPSK
b (γb) = Q

(√
2γb

)
. (30)

where γb = Eb/No and Q is the normal distribu-
tion function

Q (x) =
1√
2π

∫ ∞

x

e−
y2

2 dy. (31)

The MFB for diversity scenarios is given by [10]

PMFB
b = E

PQPSK
b

γb
1
N

J∑
j=1

N-1∑
k=0

∣∣∣H(j)
k

∣∣∣2
 . (32)

where the expected value is computed over all
{

H
(j)
k

}
.

The quantity

1
N

J∑
j=1

N-1∑
k=0

∣∣∣H(j)
k

∣∣∣2 . (33)

measures the fading for each channel realization, so
(32) is the best performance that we can have if no
ISI exists, in this specific case for the transmission of
QPSK symbols with Gray coding.
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