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Speech Enhancement Based on Linear
Prediction and Correlation-Inputting Bias

Free Equation Error ADF

Naoto Sasaoka1 , Shinichi Wada2 , James Okello3 ,

Yoshio Itoh4 , and Masaki Kobayashi5 , Non-members

ABSTRACT

In this paper, a speech enhancement technique
to reduce background noise in noisy speech is pro-
posed. We investigated the noise reconstruction sys-
tem (NRS) based on linear prediction and system
identification as a speech enhancement. Assuming
that the background noise is generated from white
noise by exciting a linear filter, the system identifica-
tion estimates the background noise from estimated
white noise. However, the white noise estimated by a
linear prediction error filter (LPEF) includes residual
speech, then the estimation accuracy of background
noise is degraded at the system identification and the
quality of enhanced speech is deteriorated. In or-
der to reduce the influence of the residual speech, a
lattice filter and a bias free equation error adaptive
digital filter (ADF) are respectively introduced to the
LPEF and system identification. The residual speech
is reduced by the lattice filter which approximates
a vocal-tract filter well. On the other hand, the bias
free equation error ADF uses the cross-correlation be-
tween the whitened noise and a desired signal as a tap
input. Since the speech does not have the correlation
from the desired signal, the tap coefficients converge
without the influence of speech.

Keywords: Speech Enhancement, Adaptive Filter

1. INTRODUCTION

Speech enhancement has been investigated to re-
duce the background noise in noisy speech. Speech
enhancement is applied to a mobile phone, a hearing
aid and a speech recognition system for improving
the intelligibility and the recognition performance of
speech. Spectral subtraction (SS) and MMSE (Mini-
mum Mean Square Error) - STSA (Short Time Spec-
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tral Amplitude) [1], [2] are known as a speech en-
hancement based on the estimation of short time
spectral amplitude with only one microphone [3].
However, the musical noise rises due to residual er-
ror at a SS system. MMSE-STSA is based on min-
imum mean square error between clean speech and
estimated speech and can avoid the musical noise.
Unfortunately, the calculation of a special function,
for example a Bessel function, is required therefore
it is difficult to achieve DSP implementation for a
hearing aid. Furthermore, the SS and MMSE-STSA
require prior estimation of a noise spectrum. This
implies that voice activity detector (VAD) is required
in noisy environments. Although the noise spectral
estimation without a VAD is proposed [4], it is as-
sumed that the input signals in first some frames do
not include the speech components. Therefore, it is
difficult to reduce the background noise which is sud-
denly generated in a speech section.

On the other hand, the speech enhancement with
one microphone based on an adaptive filter is pro-
posed [5], however, the accuracy estimation of a pitch
period of speech is needed and an un-voiced sound
cannot be enhanced. We have proposed the speech
enhancement based on noise reconstruction system
[6], [7] to solve the problems. The noise reconstruc-
tion system uses linear prediction error filter (LPEF)
and system identification [6]. NRS assumes that
the background noise is generated from white noise
by a noise generating system, which is a linear sys-
tem. At the system identification, the background
noise is reconstructed from the noise whitened by
LPEF through estimating the noise generating sys-
tem. NRS does not require the prior estimation of
a noise spectrum, a VAD and a pitch period detec-
tion. The enhanced speech does not include musical
noise. However, the input signal of the adaptive fil-
ter for estimating background noise includes residual
speech. Therefore, the estimation accuracy of back-
ground noise is deteriorated in a speech section, and
the quality of enhanced speech is decreased.

In order to solve the problem, a bias free equation
error adaptive digital filter (ADF) [8] and a lattice
filter are respectively adopted to the system identifi-
cation and the LPEF. At the bias free equation error
ADF, the residual speech included in the input sig-
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nal is reduced by using the cross-correlation between
the input signal and a desired signal as a tap input
because the residual speech does not have the corre-
lation with the desired background noise. Thus, the
quality of enhanced speech is improved. Since the
estimation accuracy of background noise is slightly
degraded due to the bias free ADF, the sub adaptive
filter is also used to improve the estimation accuracy
in this paper. In addition, a lattice filter is used as
the LPEF to decrease the residual speech in whitened
noise because the vocal-tract filter for the speech pro-
duction process is approximated by the lattice filter
[9]. Therefore the lattice filter can improve the qual-
ity of enhanced speech.

This paper is organized as follows. In Section 2,
the conventional NRS is explained. In Section 3, we
propose NRS with a lattice filter and bias free equa-
tion error ADF. The experimental results of the pro-
posed method are shown in Section 4. In Section 5,
we conclude our paper.

2. NOISE RECONSTRUCTION SYSTEM

The speech enhancement using the noise recon-
struction system is shown in Fig. 1. Noisy speech
x(n) is represented as a following equation.

x(n) = s(n) + ξ(n) (1)

where s(n) and ξ(n) are respectively clean speech and

background noise at time n. w(n), ξ̂(n) and ŝ(n) are
an output of a LPEF, reconstructed noise and en-
hanced speech respectively. The LPEF and the noise
reconstruction filter (NRF) are transversal type fil-
ters. The transfer function of the LPEF and the
NRF are respectively represented as HLPEF (z) and
HNRF (z). These transfer functions are defined by

HLPEF (z) = 1−
M∑
k−1

hk(n)z
−k (2)

HNRF (z) =
L∑

k=0

h′
k(n)z

−k (3)

where hk(n) and h′
k(n) are respectively the k-th tap

coefficients of the LPEF and the NRF.
The whitened noise w(n) is obtained by the LPEF.

Tap coefficients of a LPEF converge such as a predic-
tion error signal whitens [10]. Since a speech signal
can be represented as a stationary and periodic sig-
nal in a short time interval, a speech signal s(n) is
estimated by a linear predictor. On the other hand,
assuming that a background noise is generated by ex-
citing a linear system HN (z) from white noise, the
background noise whitens by a LPEF.

We then consider the background noise is recon-
structed from a whitened signal by the NRF. Assum-
ing that white noise generates background noise by
exciting a linear system HN (z), the background noise

can be reconstructed from a whitened noise w(n) by
estimating the transfer function of the linear system
HN (z) [6]. This estimation is performed by a system
identification model, where ξ(n), s(n) and ŝ(n) are
a desired signal, disturbance and an estimation error
signal respectively. Finally, an enhanced speech sig-
nal is obtained by subtracting the reconstructed noise
ξ̂(n) from x(n).

However, the estimation accuracy of background
noise is deteriorated due to disturbance and the resid-
ual speech component included in a tap input of the
NRF.

Fig.1: Structure of Noise Reconstruction System.

3. PROPOSED SPEECH ENHANCEMENT

In order to solve the above-mentioned problem, we
need to reduce the influence of the residual speech in
whitened noise. Thus, two methods are introduced
to the conventional NRS. One is to reduce the resid-
ual speech by improving the estimation accuracy of
speech at the LPEF. The other is to adopt a bias free
ADF, which is robust to disturbance, as the NRF. At
next sections, we explain these methods in detail.

3.1 Introducing Lattice Filter to LPEF

In order to reduce the residual speech included in
an input signal of the NEF, a lattice filter is intro-
duced to the LPEF. Since the LPEF estimates the
vocal-tract filter of speech at NRS, the introduction
of the lattice filter which approximates the vocal-tract
filter of speech well improves the estimation accu-
racy of speech at the LPEF. Consequently, the esti-
mation accuracy of background noise at NRF is also
improved.

The structure of a lattice filter is shown in Fig.
2, where fm(n) and bm(n) are respectively the for-
ward prediction error and the backward prediction
error. The forward and backward prediction error
fm(n) and bm(n) are defined by

fm = fm−1(n) + αm(n)bm−1(n− 1) (4)

bm = bm−1(n− 1) + βm(n)fm−1(n) (5)

where αm(n) and βm(n) represent forward and back-
ward reflection coefficients respectively. In this paper,
fM (n) which is M -th forward prediction error is used
as the output signal of the LPEF.
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As the algorithm for updating reflection coefficient,
least square lattice (LSL) algorithm [10] is used. The
algorithm is given as follows.

∆m(n) = λ∆m(n− 1) + fm(n− 1)bm(n− 1)/θm(n− 1)

Fm(n) = Fm−1(n)− {∆m+1(n)}2/Bm(n− 1)

Bm(n) = Bm−1(n− 1)− {∆m+1(n)}2/Bm(n)

αm(n) = −∆m(n)/Bm−1(−1)

βm(n) = −∆m(n)/Fm−1(n) (6)

where ∆m indicates the covariance between fm(n)
and bm(n). Fm and Bm are the variance of fm(n) and
bm(n) respectively. λ is a forgetting factor. θm(n−1)
is represented as

Fig.2: Lattice type LPEF

θm(n− 1) = θm−1(n− 1)−
b2m−1(n− 1)

Bm−1(n− 1)
. (7)

About divisions in Eq.(6), it is possible to decrease
the computational load by a look-up table.

3.2 Noise Estimation Based on Equation Er-
ror ADF

In order to make NRF robust to disturbance, the
bias free equation error ADF which uses a correla-
tion as a tap input [8] is introduced to the NRF. The
equation error ADF takes advantage of independence
between a desired signal and disturbance. Since the
disturbance does not have the correlation from the
desired background noise, the disturbance in a tap
input of the NRF is reduced by using the correlation
as a tap input signal. Thus the tap coefficients of the
NRF converge without the influence of speech.

The transfer function of the NRF based on an
equation error ADF is expressed as

HNRF (z) = B̂(z)/Â(z). (8)

where Â(z) and B̂(z) are defined as follows.

Â(z) = â0(n) + â1(n)z
−1 + · · · âN (n)z−N (9)

B̂(z) = b̂0(n) + b̂1(n)z
−1 + · · · b̂N (n)z−N (10)

and without loss of generality, a0 = 1. Thus, the tap
coefficient vectors are given by

a(n) = [1, â1(n), . . . , âN (n)]
T

(11)

b(n) =
[
b̂0(n), b̂1(n), . . . , b̂N (n)

]T
. (12)

Fig. 3 shows the structure of bias free equation er-
ror algorithm which uses the correlation as an input
signal for updating the tap coefficient of the NRF. An
error signal e′(n) is used to derive an adaptive algo-
rithm. w(n− τn′) represents the input signal delayed
by τn′ samples. The iteration interval n′ is far much
less than the sampling rate of the input signal due to
the relatively large value of the block length Lf+. n′

is related to n by the following equation.

n′ = div(n,Lf + 1) (13)

where div(υ, ω) refers to the biggest integer less or
equal to υ, ω.

Let Rwx(n, l−τn′) be the cross correlation between
w(n− τn′) and x(n− l). Rww(n, l− τn′) is defined as
the auto correlation between w(n−τn′) and w(n− l).
Rwx(n, l − τn′) and Rww(n, l − τn′) are given by

Fig.3: Structure of bias free adaptive algorithm.

Rwx(n, l − τn′) = E [w(n− τn′)x(n− l)] (14)

Rww(n, l − τn′) = E [w(n− τn′)w(n− l)] . (15)

In these equations, an input signal of the NRF
w(n) is independent from disturbance s(n). There-
fore the Eq. (14) can be rewritten as follows.

Rwx(n, l − τn′) = E [w(n− τn′){s(n− l) + ξ(n− l)}]
= E [w(n− τn′)ξ(n− l)] . (16)

Eq. (16) indicates that the speech which is distur-
bance is reduced. x′(n) and w′(n) are defined by
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x′(n) ≈


Rwx(n,−τn′)
Rwx(n, 1− τn′)

...
Rwx(n,N − τn′)


≈

[
Rwx(n,−τn′)R′

wx(n, τn′)T
]T

(17)

w′(n) ≈


Rww(n,−τn′)
Rww(n, 1− τn′)

...
Rww(n,N − τn′)

 (18)

where R′
wx(n, τn′) is defined as

R′
wx(n, τn′) =

 Rwx(n, 1− τn′)
...

Rwx(n,N − τn′)

 . (19)

In the proposed system, the cross-correlation and
auto correlation are estimated by

x′
n = αx′(n− 1) + {w(n− τn′)x(n)}
− αL{w(n− τn′ − L− 1)x(n− L− 1)} (20)

w′
n = αw′(n− 1) + {w(n− τn′)w(n)}
− αL{w(n− τn′ − L− 1)w(n− L− 1)} (21)

where

x(n) = [x(n), x(n− 1), . . . , x(n−N)]
T

w(n) = [w(n), w(n− 1), . . . , w(n−N)]
T

(22)

and α is a forgetting factor and αL is nearly equal
to one but less than one. In Fig. 3, M(z) is a linear
filter that calculates Eqs. (20) and (21).

The error signal e′(n) to update the tap coefficient
is given by

e′(n) = x′(n)T â(n)−w′(n)T b̂(n)

≈ Rwx(−τn′) +R′
wx(n, τn′)T â(n)−w′(n)T b̂(n)

(23)

where â0(n) = 1. â′(n) is part of vector â′(n) such
that â′(n) = [1â′T (n)]T . Then, the error e′(n) is
represented as

e′(n) ≈ Rwx(−τn′)− u(n)T ĥ(n) (24)

where

ĥ(n) =
[
â′(n)T b̂(n)T

]T
u(n) =

[
−R′

wx(n, τn′)T w′(n)T
]T

(25)

The proposed algorithm which minimizes the mean
square of e′(n) is based on NLMS (Normalized Least
Mean Square) algorithm [10] shown as follows:

ĥ(n′ + 1) = ĥ(n′) + µ′ u(n
′)e′(n′)

uT (n′)u(n′)
(26)

where µ′ is the step size of adaptation. The step size
µ′ must be such that

0 < µ′ < 2 (27)

Assuming that the input signal is stationary, the
correlations given by Eqs. (20) and (21) are con-
stant. Therefore, the tap input signal of the NRF is
constant. Under such a condition, ĥ(n) will never be
equal to an ideal tap coefficient vector. In order to
avoid the situation where the correlation vector u(n)
is entirely constant over time, we make the value of
the delay τn′ to change after certain time interval.
The variable delay is defined by

τn′ = mod(div(n,Lf + 1), τmax). (28)

where mod(v, w) is a function which returns the re-
mainder when dividing v by w, and τmax is the max-
imum delay.

3.3 Sub-Noise Reconstruction Filter

Although the quality of enhanced speech is im-
proved by the lattice filter and the bias free equa-
tion error ADF, the noise reduction performance is
degraded because the auto correlation of background
noise is faded out due to the delay τn′ and NRF can-
not estimate the noise components whose auto cor-
relation is weak. For improving the noise estimation
accuracy, we introduce the sub-noise reconstruction
filter after the bias free equation error ADF.

Fig. 4 shows the proposed noise reconstruction
system with a sub-NRF. The LPEF is the lattice filter
explained in Section 3.1. The NRF is the equation
error ADF explained in Section 3.2. The sub-NRF
is a transversal type adaptive filter whose transfer
function is represented as

HSNRF (z) =

Ms∑
k=0

hS,k(n)z
−k (29)

where hS,k(n) is the k-th tap coefficient of the sub-

NRF. ξ̂′(n) represents the background noise esti-
mated by the bias free equation error ADF. The out-
put signal of sub-NRF is ξ̂(n). The background noise
is estimated by the Sub-NRF where ξ(n), s(n) and
ŝ(n) are a desired signal, disturbance and estimation
error respectively. Though the transversal type ADF
is not robust to speech, the speech component in ξ̂′(n)
is reduced enough and then the sub-NRF estimates
the background noise accurately while maintaining
the high quality of enhanced speech.



76 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.6, NO.1 May 2012

Fig.4: Structure of Proposed NRS

4. SIMULATION RESULTS

4.1 Simulation Conditions

The performance of the proposed speech enhance-
ment was evaluated. All sound data prepared in
simulations were sampled by 8 kHz in 16 bit reso-
lution. The input signals were generated by artifi-
cially adding background noise to clean speech. As
a speech signal, 2 male speech data and 2 female
speech data recorded in Acoustic Society of Japan-
Japanese Newspaper Article Sentences (ASJ-JNAS)
were used. The tunnel noise and factory noise were
used as the actual noise. The tunnel noise is recorded
inside the tunnel of an expressway. The tunnel noise
includes wideband noise, noise arising from the venti-
lation fans and the noise arising from automobiles’ en-
gines. The factory noise is in the Noisex-92 database.
Table 1 shows each parameter in this simulation.

The signal to noise ratio (SNR) and quality of
speech (QS) were used to evaluate the noise reduction
ability and quality of enhanced speech, respectively.
These indices are defined by

SNRin = 10 log10

N ′∑
j=1

s2(j)

/
N ′∑
j=1

ξ2(j) (30)

SNRout = 10 log10

N ′∑
j=1

ŝ2s(j)

/
N ′∑
j=1

ŝ2ξ(j) (31)

QS = 10 log10

N ′∑
j=1

s2(j)

/
N ′∑
j=1

{s(j)− ŝs(j)}2 (32)

where SNRin and SNRout represent the input and
output SNR, respectively. N ′ is the number of sam-
ples. ŝs(j) and ŝξ(j) are the speech and the noise
included in ŝ(j), respectively. s(j)− ŝs(j) represents
the distortion of speech components due to a filter,
thus QS increases as the quality of enhanced speech
is increased.

4.2 Decreasing residual speech by lattice filter

In order to evaluate the performance of lattice type
LPEF, the residual speech in whitened noise w(n)
at lattice type LPEF is compared with that at the

Table 1: Parameters of Filters

LPEF using a finite impulse response (FIR) filter.
The tunnel noise, which has been explained in Sect.
4.1, was used as the background noise. As speech,
the female speech was used. SNRin was set to 0
dB. ERS(n) and ERS(n) were used to evaluate the
residual speech in whitened noise w(n). ERS(n) and

ERS(n) are defined by

ERS(n) = 10 log10

127∑
j=0

w2
s(n−j)

/
127∑
j=0

s2(n−j) (33)

ERS(n) = 10 log10

N ′∑
n=1

w2
s(n− j)

/
N ′∑
n=1

s2(n) (34)

where ws(n) is speech component in whiten noise
w(n). Fig. 5 shows the performance of LPEF. Figs.
5(a) and 5(b) illustrate clean speech and ERS(n).
From the simulation results, ERS is improved in a
speech section and ERS(n) is improved by about 1.6
dB. The figure indicates that the lattice type LPEF
has a potential of decreasing the residual speech in
w(n).

4.3 Decreasing residual speech by bias free
equation error ADF

In order to evaluate the performance of bias free
equation error ADF, the residual speech in the noise
estimated by the bias free equation error ADF is
compared with that in the noise estimated by the
conventional NRS. The tunnel noise was used as the
background noise. As speech, the female speech was
used. SNRin was set to 0 dB. E′

RS(n) and E′
RS(n)
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were used to evaluate the residual speech in estimated
background noise, which are represented as

E′
RS(n) = 10 log10

127∑
j=0

ξ̂2s (n−j)

/
127∑
j=0

s2(n−j) (35)

E′
RS(n) = 10 log10

N ′∑
n=1

ξ̂2s(n)

/
N ′∑
n=1

s2(n) (36)

where ξs(n) is speech component in estimated noise.
Fig. 6 shows the performance of bias free equation
error ADF. Figs. 6(a) and 6(b) represent clean speech
and E′

RS(n). Comparing the bias free equation error
ADF with NRF which is composed by a FIR filter,
E′

RS(n) are improved in a speech section. E′
RS(n) is

improved by about 2.6 dB. Therefore we verify that
the proposed equation error ADF can decrease the
residual speech in the estimated background noise.

Fig.5: Performance of LPEF (a)Clean speech
(b)ERS(n)

4.4 Improving estimation accuracy of back-
ground noise by sub-NRF

In this section, the effectiveness of the bias free
equation error ADF and sub-NRF is evaluated. The
tunnel noise was used as the background noise. As
speech, the female speech was used. SNRin was set
to 0 dB. EN (n) and EN (n) were used to evaluate the
estimation accuracy of background noise, which are
defined by

EN (n) = 10 log10

127∑
j=0

ξ2(n− j)

127∑
j=0

{ξ(n− j)− ξ̂(n− j)}2
(37)

Fig.6: Performance of NRF (a)Clean speech (b)
E′

RS(n)

EN (n) = 10 log10

N ′∑
j=1

ξ2(n)

N ′∑
j=1

{ξ(n)− ξ̂(n)}2
. (38)

Fig. 7(a) represents clean speech. Fig. 7(b) shows
the estimation accuracy of the NRF using a FIR filter
[6], the NRF using the bias free equation error ADF
without the sub-NRF and the NRF using the bias
free equation error ADF with the sub-NRF. Compar-
ing the bias free equation error ADF without the sub-
NRF with the FIR filter, the estimation accuracy is
degraded because the auto-correlation of background
noise is faded out due to variable delay. Comparing
the bias free equation error ADF with the sub-NRF
with the FIR filter, we observe that EN (n) is im-

proved. In addition, EN (n) is improved by about 0.5
dB. It can be seen that the sub-NRF has potential to
improve the estimation accuracy of background noise.

4.5 Waveforms of tunnel noise reduction

Fig. 8 shows the speech enhancement results when
the tunnel noise was used in the simulation. As the
speech, the female speech was used. SNRin was set
to 0 dB. Fig. 8(a) and 8(b) represent clean speech
and noisy speech, respectively, in a 0dB environment.
The speech enhancement results by conventional NRS
[6], the proposed NRS without sub-NRF and the pro-
posed NRS are illustrated in Fig. 8(c), 8(d) and 8(e),
respectively at SNRout = 7.3 dB. Comparing Fig.
8(d) with Fig. 8(c), QS is increased by about 5.3 dB
at the same SNRout. It is verified that the Lattice
type LPEF and the bias free ADF improve the quality
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of enhanced speech. On the other hand, comparing
Fig. 8(e) with Fig. 8(c), QS is increased by about 7.2
dB. We observe that the proposed NRS has potential
to decrease the residual speech in whiten noise effec-
tively and reduce the background noise while main-
taining the high quality of enhanced speech.

4.6 Output SNR and Quality of Speech

Figs. 9 and 10 respectively show the noise reduc-
tion ability and the quality of enhanced speech for
an input SNR. As background noise, the tunnel and
factory noise

Fig.7: Noise Estimation Accuracy of NRF and Sub-
NRF (a)Clean speech (b)Estimation accuracy of tun-
nel noise

were used. The 2 kinds of female speech and 2 kinds
of male speech were used as speech signals. The av-
erage SNRout and the average QS for -5 dB to 15
dB SNRin are respectively shown in Fig. 9 and Fig.
10. The vertical axis in Fig. 9 and Fig. 10 respec-
tively represents the average of SNRout and QS for 4
kinds of speech. Comparing the proposed NRS with
conventional NRS [6], QS are always higher when the
SNRout of the conventional and the proposed NRS
are the same. Although the QS of the conventional
NRS is decreased as SNRin increases, the QS of the
proposed NRS is increased. From the simulation re-
sults, it can be seen that the proposed NRS improves
the quality of enhanced speech.

5. CONCLUSIONS

In this paper, the speech enhancement based on
lattice type LPEF and bias free equation error ADF
is proposed. At the conventional NRS the residual
speech in whitened noise influences the estimation ac-
curacy of background noise. In this paper, the lattice
filter which approximates the vocal-tract filter is used
as the LPEF for decreasing the residual speech. In

Fig.8: Waveforms of Simulation results (a)Clean
speech (b)Noisy speech (c) Enhanced speech by con-
ventional NRS (d) Enhanced speech by proposed NRS
without sub-NRF (e) Enhanced speech by proposed
NRS

Fig.9: SNRout Performance

addition, the bias free equation error ADF is adopted
to the NRF for reducing the influence of the resid-
ual speech. The bias free equation error ADF takes
advantage of identification between the desired signal
and disturbance. The influence of the residual speech
is reduced by using the cross-correlation between the
desired signal and disturbance as tap inputs. How-
ever, the bias free equation error ADF causes the
degradation of estimation accuracy of background
noise. Then, the sub-NRF is used after the bias free
equation error ADF. Since the residual speech is re-
duced enough by lattice type LPEF and the bias free
equation error ADF, the sub-NRF can estimate the



Speech Enhancement Based on Linear Prediction and Correlation-Inputting Bias Free Equation Error ADF 79

Fig.10: QS Performance

background noise accurately with the high quality of
enhanced speech. The simulation results show that
the proposed system can reduce the actual noise while
maintaining the high quality of enhanced speech. In
a future work, we will research the more improvement
of noise reduction ability and the DSP implementa-
tion for a hearing aid.
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