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Transceiver and FPGA-Based Testbed in 8×8

and 2×2 MIMO-OFDM Systems
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ABSTRACT

Multiple-input multiple-output orthogonal fre-
quency multiplexing (MIMO-OFDM) is powerful
in enhancing communication capacity or reliance.
The IEEE802.11n standard defines use of four spa-
tial streams in spatial division multiplexing (SDM).
The task group of IEEE802.11ac will extend it to
eight spatial streams. We present an 8×8 MIMO-
OFDM baseband transceiver compatible with the
IEEE802.11ac specification. Two 8×8 MMSE MIMO
detectors based on Streassen’s matrix inversion have
been designed for real-time MIMO detection. To
demonstrate MIMO-OFDM transmission, we have
prototyped a FPGA-based testbed in 2×2 MIMO-
OFDM for field experiment and video transmission.

1. INTRODUCTION

Multiple-input multiple-output orthogonal fre-
quency multiplexing (MIMO-OFDM) is powerful
in enhancing communication capacity or reliance.
MIMO-OFDM is currently adopted in IEEE802.11n
WLAN systems [1]. In upcoming standardization
of IEEE 802.11ac [2], use of eight spatial streams
in single-user MIMO (SU-MIMO) is discussed. As
MIMO spatial streams increase, computational and
hardware complexities in MIMO-OFDM systems also
greatly increase. It is a challenging to design a
MIMO-OFDM transceiver with minimal hardware
cost and power dissipation in VLSI implementation.
Especially, MIMO detection needs high-speed compu-
tation due to its large computational cost. Hardware
implementation of MIMO detection is one important
issue. Related researches have tackled linear detec-
tors in minimum mean squared error (MMSE) for
4×4 MIMO-OFDM systems in terms of a trade-off
between computational complexity and detector per-
formance [3], [4]. Our presented MMSE MIMO de-
tectors use pipeline processing on a subcarrier basis
and are superior in throughput performance [5], [6].
As the next step, we study hardware development of
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Fig.1: Block diagram of 8×8 MIMO-OFDM
transceiver.

an 8×8 MIMO-OFDM transceiver compatible with
the IEEE802.11ac specification.

Since a 4×4 MIMO-OFDM baseband transceiver
has been developed in our previous work [7], most
part of circuit components can be re-used in the 8×8
MIMO-OFDM transceiver. An 8×8 MIMO detector
requires a new design because of increasing matrix
size and computational complexity by eight times as
much as in 4×4 MIMO. We have designed two 8×8
MMSE MIMO detectors according to time variations
in MIMO channels (i.e., fast and slow fading envi-
ronments). The implementation result of the 8×8
MIMO-OFDM transceiver has been reported in cir-
cuit area and power dissipation.

We have prototyped a FPGA-based testbed in 2×2
MIMO-OFDM for field experiment and video trans-
mission. Our testbed integrates baseband and RF
units and can measure communication performance
in bit error rate (BER) and packet error rate (PER).
In the field experiment, we have evaluated outdoor
MIMO characteristics in line-of-sight (LOS) and non-
line-of-sight (NLOS) conditions. The video transmis-
sion equipment has extended the testbed by adding
packet sending and receiving functions to deal with
video streaming data.

This paper is organized as follows: In Section 2, we
describe an 8×8 MIMO-OFDM baseband transceiver
and its implementation. The FPGA-based testbed
for field experiment and video transmission is re-
ported in Section 3. Finally, Section 4 provides a
conclusion.
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2. 8X8 MIMO-OFDM TRANSCEIVER

2.1 Block Diagram

A block diagram of an 8×8 MIMO-OFDM
transceiver is shown in Fig. 1. The encoded data is
mapped into QAM constellation points. OFDMmod-
ulated signals adding a cyclic prefix are transmitted
by the eight outputs. The receiver performs synchro-
nization, demodulation, and extraction of data and
pilot subcarriers. Spatial decomposition is executed
by MIMO channel estimation and MIMO detection.
This requires considerable complexity, which causes
difficulty in the VLSI implementation. A soft demap-
per computes a soft-bit metric including the signal to
interference and noise ratio (SINR) for each space and
frequency index. The soft-bit metric is inputted into
the Viterbi decoder block. The PHY data is restored
through de-scrambling in the last step. The maxi-
mum PHY data rate reaches 3 Gbps by use of an 80-
MHz channel bandwidth. We previously investigated
the frame formats of this channel in SISO-OFDM and
2×2 MIMO-OFDM systems in [8].

2.2 Data Buffering

Data buffering between QAM mapping and IFFT
blocks is illustrated in Fig. 2. The null and pilot sub-
carriers are inserted into the data sequence of data
subcarriers before IFFT operation. Note that the
length of the data sequence is changed by insert-
ing the null and pilot subcarriers. To maintain the
same clock sampling rate, the input RAM is used as
data buffering. Thus, embedded memory units are
used to connenct the adjoined processing blocks in
the transceiver.
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Fig.4: Circuit structure of MIMO detector.

2.3 MIMO Detection

MIMO-OFDM received signals yk[t] with MT

transmitter and MR receiver antennas are described
by

yk[t] = Hksk[t] + nk[t], (1)

where k is a subcarrier index, t is a data symbol in-
dex, sk[t] is a signal transmitted at t-th symbol, and
nk[t] is a white Gaussian noise vector. Hk indicates
a MIMO channel matrix whose elements are given
the channel response from j-th transmitter antenna
to i-th receiver antenna. The linear MIMO detection
is classified into zero-forcing (ZF) and MMSE. The
weight matrix Gk in the MMSE criterion is given by

Gk = (HH
k Hk + σ2I)−1HH

k , (2)

where (·)H denotes the complex conjugate transpose,
and σ2 is the noise variance. The decoded signal ŝk[t]
is decoded by multiplexing the weight matrix to the
received signal as

ŝk[t] = Gkyk[t]. (3)

The timing chart in Eqs. (2) to (3) is shown in Fig.
3, which consists of MIMO channel estimation, pre-
processing (matrix inversion), and MIMO detection.
The channel estimation extracts the MIMO channel
matrix ofHk from training symbols. The preprocess-
ing calculates the inverted matrix of Gk. The MIMO
detection decodes the original data from the received
signals in the data symbols. When a MIMO-OFDM
receiver computes the inverted matrix of Gk and use
it for the MIMO detection in the same packet, the
preprocessing should finish by receiving the first data
symbol.

The block diagram of a 8×8 MIMO detector is
shown in Fig. 4. The input data in the MIMO detec-
tion block are given by the estimated MIMO channel
matrix of Hk with k-th frequency bin and MT×MR

matrix. The matrices of P k, Rk, and Gk are com-
puted as

P k = HH
k Hk + σ2I (4)

Qk = HH
k (5)

Rk = P−1
k (6)

Gk = RkQk, (7)
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Table 1: Division of Strassen’s algorithm.

Step Equations
Number of Matrix Arithmetic Units

4x4 MUL 4x4 ADD 4x4 INV

#1 (12) 2 1 0

#2 (13) 2 1 0

#3 (14) 2 1 0

#4 (15) – (18) 2 1 1

#5 (19) – (22) 2 1 1

#6 (23) 2 1 0

#7 (24) 2 1 0

#8 (25) 2 1 0

#9 (26) 2 1 0

The output data of Gk are stored in the memory unit
and retrieved in the MIMO decoding process. We use
Strassen’s algorithm for the matrix inversion, which
divides a square matrix into four block matrices. For
an 8×8 matrix Ω, it is divided into 4×4 block matri-
ces as

Ω =

(
A B
C D

)
, (8)

where A,B,C,D are the 4×4 matrices. Ω−1 is cal-
culated by

Ω−1 =

(
F −A−1BE−1

−E−1CA−1 E−1

)
=

(
A′ B′

C ′ D′

)
, (9)

F = A−1 +A−1BE−1CA−1 (10)

E = D −CA−1B. (11)

where Ω is a Hermitian matrix composing C =
BH ,B′ = C ′H . This property gives the relation of
A−1B = (CA−1)H . The calculation of CA−1 can
omit the calculation of A−1B.

A complete pipeline MIMO detector is depicted
in Fig. 5, which connects all 4x4 matrix units of ma-
trix adder, subtractor, multiplier, and inversion units.

Table 2: Implementation results of 8×8 MIMO de-
tectors.

Complete Pipeline 9-Step Computation

Wordlength (bits) 26 24

Logic Gate Count 15.4 M 2.3 M

Clock Frequency (MHz) 100 100

Pipeline Latency (µs) 0.78 9.63

Power Dissipation (mW) 1,420 230

The matrix inversion unit computes the Strassen’s
matrix inversion in Eqs. (9)-(11). The delay units
are inserted for adjusting pipeline latency delays.
This detector achieves the highest throughput perfor-
mance by one data output per cycle, however needs
considerable hardware. To reduce circuit scale, we
present a 9-step pipeline MIMO detector which di-
vides the whole computation into 9 steps. In case of
the 9-step computation, Eqs. (4)-(7) can be divided
by the following equations:

b11 = h11h11 + h12h
∗
12 + σ2I (12)

b12 = h11h
∗
21 + h12h22 (13)

b22 = h21h
∗
21 + h22h22 + σ2I (14)

c1 = b−1
11 (15)

c2 = bH12c1 (16)

c3 = c2b12 (17)

c4 = b22 − c3 (18)

c5 = c−1
4 (19)

c6 = cH2 c5 (20)

c7 = c6c2 (21)

c8 = c1 + c7 (22)

g11 = c8h11 − c6h21 (23)

g12 = c8h12 − c6h22 (24)

g21 = −cH6 h11 + c5h21 (25)

g22 = −cH6 h12 + c5h22, (26)

where hij and gij are 4x4 block matrices of Hk and
Gk, respectively. These equations are computed by
4x4 matrices operations. The division of 9-step com-
putations in Strassen’s algorithm is shown in Table
1. Eqs. (12)-(26) are divided so as to equalize the
numbers of matrix operations (multiplication, addi-
tion/subtraction, and inversion) at each step. The
minimum requirement of 4x4 matrix arithmetic units
in circuit design is given by this division, i.e., two mul-
tiplication units, one addition/subtraction unit, and
one inversion unit. The circuit structure of the 9-step
pipeline detector is illustrated in Fig. 6. The signal
input of “Sel” is used for changing data paths in the
matrix arithmetic units where different matrix opera-
tions can be executed in this dynamic reconfigurable
architecture.
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Fig.6: 9-step pipeline MIMO detector.

Fig.7: Wordlength determination in complete
pipeline detector.

2.4 Implementation

The 8x8 MIMO detectors were implemented on a
90-nm CMOS technology, where a clock frequency
was set to 100 MHz with 1.0-V supply voltage. The
wordlengths of the MIMO detectors were determined
by fixed-point simulation. Fig. 7 shows BER perfor-
mance in the fixed-point (between 22 and 30 bits)
and the floating-point (32 bits) operations. The
wordlengths of the detector were set to 26 bits in the
fixed-point precision. The implementation results of
the MIMO detectors is summarized in Table 2. The
complete pipeline detector shows low latency and a
large circuit. The 9-step pipeline detector has a small
circuit and long latency. For high mobility in wire-
less terminals assuming that a receiver must decode
MIMO signals within one packet period (i.e., fast fad-
ing environments), the complete pipeline detector is
desirable. For moderate mobility assumed in WLAN
applications, the 9-step pipeline detector is enough
for real-time processing in MIMO detection.

The whole implementation result of the 8×8
MIMO-OFDM transceiver is summarized in Table 3.
The 9-step pipeline MIMO detector has been adopted
in the MIMO detection block. Since the other blocks
has been developed in our previous works [7] and [8],

Table 3: Implementation result of 8×8 MIMO-
OFDM transceiver.

Transmitter Logic Gate Count Power Dissipation (mW)

Scramble 4,830 0.57

Encoding 5,390 0.60

Interleave 104,020 14.2

Mapping 5,480 0.52

Pilot Insertion 218,970 29.9

IFFT 573,680 57.9

GI & Preamble Insertion 330,720 44.5

Total 1,243,090 148.2

Receiver Logic Gate Count Power Dissipation (mW)

Synchronization 21,410 2.5

FFT 573,920 81.0

Re-order & Pilot Removal 235,370 33.4

Channel Estimation &
7,800,630 956.6

Channel Estimation &

MIMO Detection
7,800,630 956.6

De-mapping 14,580 1.1

De-interleave 676,930 73.4

Viterbi Decoding 2,711,330 257.6

De-Scramble 4,830 0.30

Total 12,039,000 1,405.9
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the explanation of their circuit structures is omitted.
The power dissipation was 1.41 W in the receiver and
the gate count was 13.3 millions in both the transmit-
ter and receiver. The MIMO detection block was the
most costly in terms of both circuit area and power
dissipation. Compared with the 4×4 MIMO-OFDM
transceiver developed in our work [7], circuit area and
power dissipation increase threefold.

3. MIMO-OFDM TESTBED

3.1 Structure

The 2x2 MIMO-OFDM testbed we developed is il-
lustrated in Fig. 8. The baseband unit consists of
the FPGA and CPU boards. In the CPU board,
an embedded PC provides the monitor display and
network connection. The FPGA board is controlled
by the commands sent from the CPU board. We
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have developed a GUI-based measurement software
on this computer platform to evaluate the communi-
cation performance and propagation channel charac-
teristics during the field experiment. The measure-
ment software provides the signals monitoring and
BER, PER, and QAM constellation measurements.
The baseband signals in the FPGA board are in-
putted into the DAC modules and outputted from
the ADC modules. The RF unit is designed based on
super heterodyne architecture where the signals are
modulated/demodulated at 5200 MHz and 374 MHz
in the RF and intermediate frequency (IF) bands, re-
spectively. The details of RF transceiver has been
explained in [9].

A block diagram of the FPGA board is illustrated
in Fig. 9. The transmitted data sent from the
CPU board are encoded and converted into MIMO-
OFDM signals in the “Data Encoding” and “MIMO-
OFDM TX”, respectively. “Up Sampling” block exe-
cutes low pass filtering. DAC/ADC module operates
in 200MHz clock frequency with a double-data-rate
(DDR) of 400 Msps sampling frequency. The signals
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Fig.11: Experimental environments.

Table 4: Experimental conditions.
Radio Frequency Band 5150 - 5250 MHz

Transmit Power per Antenna 14 dBm

TX Antenna

(Directional)

NATEC PAT509S-4953

9 dBi / E-Plane 58 deg / H-Plane 76 deg

RX Antenna 

(Directional)

NATEC VA505A-W52

5 dBi / E-Plane 40 deg / H-Plane 360 deg

Sampling Rate in DAC/ADC 400 Msps

Communication System 2x2 MIMO-OFDM 

Transmitted Signal Bandwidth 79.68 MHz

Modulation & Coding QPSK, 16QAM

Coding
Convolutional Coding

(Coding Rate 1/2) 

Error Correcting Viterbi Decoding

in the up-sampling unit are interpolated and filtered
by the low-pass FIR filter. We used a Xilinx Virtex-
5 XC5VLX330T FPGA device in the FPGA imple-
mentation. The 2x2 MIMO-OFDM transceiver has
14 bits in the input/output ports with a maximum
20 bits in the arithmetic operations. The result of
a maximum clock frequency is 108 MHz. The total
percentage of FPGA utilization is at most about 32
% at most.

3.2 Field Experiment

We evaluated communication performance using
our testbed in outdoor environments. The experi-
mental location and environments are shown in Fig.
10 and Fig. 11, respectively. The field experiment
was performed in the Hokkaido University Sapporo
Campus. We evaluated four environments of “pas-
sage”, “corner”, “farm”, and “grove” which are clas-
sified into LOS or NLOS and urban or suburban con-
ditions. The experimental conditions are enumer-
ated in Table 4. We tested QPSK and 16QAM with
an 1/2-coding rate in modulation, whose modulation
modes correspond to 133 and 266 Mbps data rates in
the PHY layer, respectively. The maximum transmit
power per antenna was set to 14 dBm.

The experimental results of throughput, measured
SNR, eigenvalue gap, channel capacity are summa-
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Table 5: Experimental results.
Environment (a) Passage (b) Corner (c) Farm (d) Grove

Area Urban Urban Suburban Suburban

Line-of-Sight Condition LOS NLOS LOS NLOS

Maximum Throughput 

(Mbps)
266.0 125.0 101.1 143.6 

Measured SNR (dB) 32.9 23.3 33.6 26.4

Eigenvalue Gap

between λ
1

and λ
2 

(dB)
11.7 10.2 26.5 11.5

Channel Capacity 

(bps/Hz)
8.76 7.10 7.55 5.43
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Fig.12: Structure of video transmission equipment.

rized in Table 5. The measured SNR is given by a
ratio of the measured signal power and noise power.
The channel capacity can be calculated from the
MIMO channel matrix and SNR value [10]. We use
the following equation for this:

C = E
[ 1

K

K∑
k=1

log2

(
det(I +

P

σ2
HkH

H
k )

)]
, (27)

where Hk is the MIMO channel matrix with a k-th
subcarrier matrix. P and σ2 denote the received sig-
nal power and noise variance, respectively. K is the
number of data subcarriers. The channel capacity as-
sumes ideal MIMO communication and is not suited
to evaluate actual throughput in the testbed. Hence,
the results of maximum throughput do not accord to
those of channel capacity. The passage environment
shows the best performance in maximum throughout
due to the high SNR and the low eigenvalue gap val-
ues. The farm environment presents the high SNR
value as much as the passage environments. How-
ever, it decreases throughput because the low eigen-
value gap makes MIMO signal separation difficult.
Our experiment showed that the farm environment is
the severest in outdoor MIMO communication.

3.3 Video Transmission Equipment

The wireless video transmission equipment is illus-
trated in Fig. 12. Video encoding and decoding are
executed by software on PCs. VLC Media Player is
used for packet data streaming and specifies a spec-
ified IP address with a port number . It can also
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change a video format and a data rate in video en-
coding. In the transmitter side, the data captured in
USB camera are transferred to PC. The packet data
are generated and sent to the CPU board. The CPU
board receives packet data and inserts a sequence
number for each packet. The FPGA board converts
packet data to baseband signals and sends to the RF
unit after MIMO-OFDM modulation. The RF unit
transmits RF signals by two transmitter antennas. In
the receiver side, the FPGA board demodulates the
MIMO signals and restores packet data in the CPU
board. The CPU board removes the sequence num-
ber from packet data and sent to PC. Finally, the
monitor displays camera pictures.

We have developed a program which relays stream-
ing data on the CPU boards. Fig. 13 shows the
procedure of the relay program. This program sends
and receives streaming data by using Winsock appli-
cation programming interface (API). The reception
socket is prepared to receive packet data from PC in
the transmitter side where the port number and the
settings of reception in UDP are determined. The
packet size of 1,316 bytes is defined as the specifi-
cation of VLC Media Player. The reception socket
receives streaming data until the buffer is full. Four
types of packet numbers (1,3,6, and 12 packets) have
been tested in the data buffering. The sequence num-
ber is added at the head of packet data. These data
are sent to the FPGA board. The above procedure
repeats for every packets. In the receiver side, the
demodulated data from FPGA board are read out
and the sequence number are removed. Destination
port number, IP address, and UDP parameters are
assigned in the transmission socket.

We tested video quality of this equipment by
changing the number of packets in the data buffering.
The maximum video size was set to 1280×960 with
MPEG4 encoding. We found that burring 6 packets
shows the best quality due to low processing latency
in the CPU board. Larger video sizes such as full HD
will be tested after improvement of the relay program.
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4. CONCLUSION

This paper describes hardware development of an
8×8 MIMO-OFDM baseband transceiver compatible
with the IEEE802.11ac specification and 2×2 MIMO-
OFDM FPGA-based testbed. The 8×8 MIMO-
OFDM transceiver reaches 3 Gbps in the PHY layer.
The two pipeline MMSE MIMO detector havw been
designed for real-time processing in MIMO detec-
tion. We have prototyped the 2×2 MIMO-OFDM
testbed for field experiment and video transmis-
sion. The field experiment showed that the maxi-
mum throughout strongly depends on MIMO envi-
ronments. The video transmission equipment pro-
vides real-time video transmission by relaying stream-
ing packets. The development of 4×4 and 8×8
MIMO-OFDM testbeds remain to done in our future
work.
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