
Block-Adaptive Lattice Vector Quantization in Image Coding 127
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in Image Coding
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ABSTRACT

A subband image coding algorithm is described
based on lattice-based spherical VQ and lattice-based
pyramid VQ. The algorithm partitions a subband
(or wavelet) decomposed image into blocks of vari-
ous sizes, depending on their energy and complexity
constraints on the enumeration encoding of lattice
codevectors. Each block is lattice vector quantized
and encoded using a product code. The algorithm is
simple and effective, exploiting energy clustering in a
wavelet transformed image. Using the integer lattice,
the algorithm provides performance slightly better
than the Set-Partitioning Embedded Block (SPECK)
algorithm, and is competitive with JPEG2000 and
the set partitioning in hierarchical trees (SPIHT) al-
gorithm.

Keywords: Lattice Vector Quantization, Image
Coding, and Wavelet Transform

1. INTRODUCTION

Subband image decomposition [1], typically us-
ing a wavelet transform [2], is an effective method
of image representation, supporting several desirable
image compression properties, such as scalability,
region-of-interest coding, and embedded coding for
progressive transmission [3]-[6]. An octave subband
structure is commonly used (e.g., [5]-[6]). In all ex-
cept the lowest frequency subband, the subband (or,
referred to interchangeably in this paper, wavelet) co-
efficients have marginal density that is well-modeled
as Laplacian, or generalized Gaussian (GG)with small
shape parameter (α), i.e., α = 0.7, as demonstrated
in Fig. 1 [2], [7]. The subband coefficients also have
small correlation [7], but they are generally not mem-
oryless, instead displaying an evident nonlinear en-
ergy dependence. This is shown in Fig. 2, compar-
ing the empirical block energy density for contigu-
ous blocks of subband coefficients, to the energy den-
sity of blocks of memoryless Laplacian or general-
ized Gaussian data of the same mean and variance.
The empirical block energy density is highly peaked
at small energy, and heavy-tailed, reflective of the
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Fig.1: The marginal density of subband coefficients
compared with Gaussian, Laplacian, and generalized
Gaussian distribution with α = 0.7 with the same
mean and variance.

large number of small amplitude subband coefficients,
with the larger magnitude coefficients typically clus-
tered, rather than distributed uniformly throughout
the subbands. Fig. 2 uses block energy defined as
||x||22 =

∑
xi∈block |xi|2, but similar results are ob-

tained defining the block energy as the ℓ1 norm. Ef-
ficient subband image coding algorithms take advan-
tage of such energy dependence, such as by using a
quad-tree data structure across [3]-[4] or within sub-
bands [8], or by using local contexts in bit-plane cod-
ing [5].

The image subband block energy density can
be modeled as a mixture of memoryless Gaussian or
Laplacian random variables [9]-[10]. A suitable block-
based lattice vector quantizer (LVQ) can be formed
using concentric spherical (motivated by the Gaus-
sian mixture model), or pyramidal LVQ (motivated
by the Laplacian mixture model). A spherical LVQ
using the RE8 lattice [11] is used in the AMR-WB+
audio coding standard [12]. A pyramid-based LVQ
has been used for image coding [13]-[14]. Lattice-
based vector quantization offers the potential of rel-
atively simple quantization and granular coding gain
[15]. However, the mapping from lattice codevectors
to binary codewords can be cumbersome, with com-
plexity that typically grows with the lattice dimen-
sion.

In this paper, we propose an image coding algo-
rithm based on lattice-based spherical vector quanti-
zation (LSVQ) or lattice-based pyramid VQ (LPVQ),
motivated by Fig. 2. Quadtree partitioning is used to
divide regions of coefficients into blocks to be lattice
vector quantized and encoded. The block sizes are
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Fig.2: Empirical density of wavelet block’s energy
compared to that of memoryless Laplacian and gen-
eralized Gaussian vectors with the same mean and
variance.

selected based on block energy constraints. If a block
has too large energy, it is partitioned into smaller
blocks. The maximum block energy is selected sub-
ject to complexity constraints on the enumeration of
lattice codevectors as binary codewords. Blocks of
coefficients are vector quantized and encoded using a
product code based on LSVQ or LPVQ. The block
partitioning is motivated by SPIHT-type algorithms,
[8], [16], however, instead of partitioning based on
significant and insignificant bit-plane coefficients, the
proposed method partitions based on block energy.
The resulting bitstream is not embedded, but offers
the potential granular gain of the lattice.

2. BLOCK-ADAPTIVE LATTICE VQ

This section briefly describes the basic concepts of
the proposed block-based image coding using set par-
titioning, and introduces the notation and terminol-
ogy used later in the paper. An image is decomposed
into subbands, typically using a wavelet transform.
This transformed image, or portions of it, are struc-
tured as sets of coefficients. A set is called e-limited
if its energy is less than a threshold; otherwise it is
called non-e-limited. The threshold is generally de-
pendent on the number of coefficients in the set (the
vector dimension). The block partitioning algorithm
begins with large sets of coefficients. Sets are tested,
and if non-e-limited, are split into subsets for fur-
ther testing. Sets that are e-limited are quantized
and encoded without further partitioning of the set.
This can be done directly, or in a progressive man-
ner. Partitioning can be done based on spatial ori-
entation trees [8], [17] or quadtrees [16]. The goal of
partitioning is to keep splitting off clusters of large
energy coefficients while maintaining a large set of
relatively small energy coefficients which are jointly
vector quantized and encoded. By doing this, the en-
ergy clustering evident in Fig. 2 can be exploited and

Fig.3: Set S
(l)
m,n

the quantization and encoding can be performed effi-
ciently. In this work, partitioning based on quadtrees,
similar to [16], is used and the testing condition uses
either the ℓ2 or ℓ1 norm for set energy. More specifi-
cally, an e-limited set in this work implies a set that
can be quantized and encoded using a product code
based on LSVQ or LPVQ and hence, the vector of set
coefficients lies within a bounding sphere or pyramid
of respective ℓ2 or ℓ1 radius.

Let ci,j and ĉi,j be the unquantized and corre-
sponding quantized version of the wavelet coefficient
at coordinate (i, j) of a transformed image of size
N ×N . Denote a subset (or block) at level l due to
quadtree parititioning, and its corresponding quan-

tized version, as S
(l)
m,n and Ŝ

(l)
m,n, respectively, where

(m,n) is the coordinate of a given coefficient in S
(l)
m,n

used to refer to that subset, e.g., the coordinate of
the coefficient at the block top-left corner, as shown
in Fig. 3. Denote subsets (or subblocks) resulting

from quadtree partitioning S
(l)
m,n as O(S

(l)
m,n). Define

E(Ŝ
(l)
m,n, ν) =

∑
ĉ∈Ŝ

(l)
m,n
|ĉi,j |ν , where ν ∈ {1, 2}, as

the energy in a block of quantized coefficients. A set

Ŝ
(l)
m,n is said to be e-limited if

E(Ŝ(l)
m,n, ν) ≤ T (l) (1)

where T (l) is a predefined threshold for partition level
l, and the threshold can vary with partition level.

The LSVQ and LPVQ use as codevectors all lat-
tice vectors within a bounding sphere or pyramid as
shown in Fig. 4 and Fig. 5, respectively. Let n de-
note the vector dimension and Λn the lattice. We
assume the lattice is of the form described in [19],
with Λn ⊆ Zn, where Zn is the cubic lattice of di-
mension n. Let NΛ,1(n, k) denote the number of lat-
tice points satisfying ||y||1 = k, and let NΛ,2(n, k) de-
note the number of lattice points satisfying ||y||22 = k,
k = 0, 1, . . .. These values are summarized as the lat-
tice nu-function [13] and theta function [15], respec-
tively. A variable-length code, Cν , (e.g., a Huffman
code) is used to encode the ν-norm energy, with code-
word denoted by cν(||y||νν). An enumeration code,
Cc, uses ⌈log2(NΛ,ν(n, ||y||νν))⌉ bits/vector to encode
the codevector, conditioned on the energy. Thus, the

encoding bits for the quantized block Ŝ
(l)
m,n are com-

posed of two parts: 1) a codeword used to specify the
sphere or the pyramid, cν(||y||νν), and 2) a codeword
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Fig.4: Lattice Spherical Vector Quantization
(LSVQ)

Fig.5: Lattice Pyramid Vector Quantization
(LPVQ)

used to specify the codevector on a given sphere or
pyramid, cc. Encoding and decoding using codes Cν

and Cc can be implemented primarily using look-up
tables.

Fig. 6(a) shows the relative distribution of blocks
of various sizes resulting from the quadtree partition-
ing based on the proposed algorithm and the ℓ2 en-
ergy measure. Similar distributions are obtained for
the ℓ1 case as shown in Fig. 6(b). At low overall en-
coding rate there are many large blocks and very few
singleton blocks, most of the latter from the low fre-
quency subband. Even at large encoding rate, there
are relatively few singleton blocks, and the abundance
of 2×2 and 4×4 blocks suggest the granular gains of
theD4, E8, 16-dimensional Barnes-Wall lattice (Λ16),
or other lattices might improve the encoding signal-
to-noise ratio (SNR).

3. CODING ALGORITHM

3.1 Algorithm

The main idea of the partitioning algorithm is sim-
ple. Large subsets are tested according to an en-
ergy threshold to determine whether partitioning is
required. As soon as subsets have energy within the
testing threshold, they are encoded using a product
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Fig.6: Number of pixels for each block size: (a)
based on ℓ2-norm; (b) based on ℓ1-norm:

code based on LSVQ (ν = 2) or LPVQ (ν = 1) and
are removed from further consideration. Since the or-
der in which subsets are tested is important and needs
to be maintained, a list is used to store the testing
order. Denote the list of sets as LS. Also, define the
binary testing function as

EF (Ŝ(l)
m,n, ν) =

{
0, if E(Ŝ

(l)
m,n, ν) ≤ T (l)

1, if E(Ŝ
(l)
m,n, ν) > T (l).

(2)

Assume N is power of 2. The proposed encoding
algorithm is presented in Algorithm 1.

The algorithm uses the functions LV Q() to per-
form lattice VQ, encode() to generate the binary
codeword representing a lattice codevector, and
encodescalar() to generate the binary codeword for

a singleton block. To quantize the block S
(l)
m,n using

LVQ, the vector is formed based on raster scanning.
The decoding algorithm is similar to the encoding
algorithm, replacing output to input, encode() to de-
code(), and quantization is no longer required. In the
algorithm main loop (while loop), the block size is
decreased if the block is non-e-limited. The decoder
tracks the block size from the sequence of energy-
testing bits. The algorithm makes no assumption on
the lattice (or lattices) used. However, if the inte-
ger lattice is used, lattice quantization can be done
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Algorithm 1 Block-Adaptive LVQ

Given: subband image {ci,j} and chosen ν-norm
Initialize: LS = {(0, 0)}, l = 0
Start:

1: while LS ̸= ϕ do
2: for all (m,n) ∈ LS except those added in cur-

rent l do
3: if N > 1 then
4: • Ŝ(l)

m,n = LV Q(S
(l)
m,n, N);

5: • output EF (Ŝ
(l)
m,n, ν);

6: if (EF (Ŝ
(l)
m,n, ν) = 1) then

7: • add O(S
(l)
m,n) to the end of LS;

8: • remove (m,n) from LS;
9: else
10: • output encode(Ŝ(l)

m,n, N, ν);
11: • remove (m,n) from LS;
12: end if
13: else
14: • Ŝ(l)

m,n = round(S
(l)
m,n);

15: • output encodescalar(Ŝ(l)
m,n);

16: • remove (m,n) from LS;
17: end if
18: end for
19: • N ← N ≫ 2;
20: • l← l + 1;
21: end while

in advance, before the algorithm execution, and the
partitioning can be done directly to quantized blocks,

Ŝ
(l)
m,n.

3.2 Complexity consideration

In addition to the complexity of the wavelet trans-
form, which also used in the JPEG2000 and SPIHT
algorithms, the block-adaptive LVQ algorithm com-
plexity has three main parts: 1) lattice VQ and en-
coding, 2) subblock energy testing and encoding, and
3) memory requirement. The lattice VQ is composed
of three steps: vector quantization, the ν-norm en-
ergy encoding, and the enumeration encoding. Vec-
tor quantization is very simple when the Zn lattice
is used (just integer rounding operation), however, it
can be complicated when other lattices are used. We
give further explanation of this in Section 4.. The ν-
norm energy encoding can be done easily using a look-
up table. The enumeration encoding can be cum-
bersome if the lattice dimension (equivalent to size
of image subblock) becomes large, since the number
of lattice points needed to be enumerated increases
exponentially with the dimension or rate. However,
since the allowable subblock sizes are predefined, and
the block energy is limited, the encoding can be sim-
ply performed using looking-up tables. It should be
remarked that in the proposed algorithm the lattice
VQ is performed at every partitioning level so that

even a simple look-up table operation may require
some running time. However, when the Zn lattice
is used, the lattice VQ need only be performed once
before the partitioning is done. This helps reducing
encoding time. Since the SPIHT algorithm can be
considered as implicitly using entropy coded scalar
quantization, the lattice VQ in the proposed algo-
rithm has additional complexity unless the Zn lat-
tice is used. However, for certain lattices, such as the
Dn and E8 lattices, this additional complexity is very
modest [15].

For subblock energy testing, during the partition-
ing each subblock energy is tested against predefined
energy thresholds. Since a large subblock is com-
posed of a group of smaller subblocks (corresponding
to the quadtree partitioning), and the a large block’s
energy is the sum of its subblock energies, a linked list
data structure can be used and the subblock energy
calculation performed only once before coding the en-
coding algorithm is executed. During the coding, a
specified subblock’s energy can be obtained from that
list.

Finally, the algorithm’s memory requirements are
similar to the SPIHT algorithm. In addition to the
wavelet transformed image, the partitioning requires
the implementation of a linked list, as well as the list
of subblock energies. Also, the proposed algorithm
requires memory for storing the enumeration look-up
tables, which may be large if large allowable block
sizes or energy thresholds are used.

4. SIMULATION RESULTS

To evaluate the performance of the proposed al-
gorithm, a five-level subband decomposition is gener-
ated using a 9/7 biorthogonal filter bank [4], [5]. At
first, the simulation uses integer (cubic) lattice VQ
for simplicity. Later on, the simulation using other
lattices will be investigated. Both LVQ based on ℓ1
(LPVQ) and ℓ2 norms (LSVQ) are used. A Huffman
code is generated for Cν using empirical energy prob-
abilities for each partition level. The largest allowed
block size is 16×16 (N = 16) so that the allowed pos-
sible block sizes due to partitioning are 16×16, 8×8,
4 × 4, 2 × 2, and 1 × 1. Raw energy-testing bits are
entropy coded (using arithmetic coding) to exploit
the statistical dependence among them. Note that
the 9/7 biorthogonal filter is used in the simulation
since it is commonly used in most image coding al-
gorithm literatures so that the performance compar-
ison with other image compression algorithms can be
done directly. Moreover, by the study using impulse
and step response criteria, and using Holder regular-
ity in [18] shows that at the same compression ratio,
the 9/7 biorthogonal filter bank offers highest PSNR
among all of the minimum order biorthogonal filter
banks with combined analysis/synthesis filter lengths
of ≤ 36. In general, any other perfect reconstruction
filter bank can be used together with the proposed
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Fig.7: Performance comparison of LSVQ (ℓ2) and
LPVQ (ℓ1) with SPIHT and SPECK for “Lena” and
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algorithm.
The simulation results are shown in Fig. 7-9 com-

pared with the SPIHT and the SPECK algorithm
(SPECK is done using QccPack [26]). The perfor-
mance is slightly superior to SPECK, and is compet-
itive with the SPIHT algorithm (using adaptive arith-

metic coding), with LPVQ performing a little better
at low and moderate encoding rates. The LPVQ per-
forms slightly better than the LSVQ. Note that the
total encoding rate would increase about 3-5% with-
out entropy coding of the energy-testing bits. So,
there is a little gain by entropy coding those bits.
About 5-10% of the total encoding rate is used to en-
code the energy-testing bits.

Figure 6 suggests the possibility that better cover-
ing lattices (higher granular gain compared with the Z
lattice) might be used, based on the partitioned block
sizes, to possibly allow improvement in LVQ SNR due
to granular fidelity. Since there are four possible al-
lowed block of sizes, 16×16, 8×8, 4×4, and 2×2, the
vectors formed by these blocks are of dimension 256,
64, 16, and 4, respectively. Then, we might be able to
use better lattices with dimensions corresponding to
those vector dimensions. However, for vectors of size
256 or 64, using other better lattices rather than in-
teger lattice may require very large computatial com-
plexity. To see this, let us briefly describe the notion
of the coset codes introduced by Forney [19]-[20]. For-
ney shows that a family of Barnes-Wall lattices and
its principal sublattices can be generated by iteratvely
applying a simple construction called the squaring
construction. He also points out the close relation-
ship between this family of lattices and the family
of Reed-Muller codes (RM) [21]. More specifically,
denote the lattice generated by the iterated squaring
construction as Λ(r, n), where r is an integer and the
lattice dimension is N = 2n+1. Λ(r, n) = ZN for
r ≥ n, and Λ(r, n) = R−rΛ(0, n) for r ≤ 0, where
R is the rotation operator. The Barnes-Wall lattices
are equivalent to Λ(r, n) when r ≥ 0. Forney shows
that Λ(r, n) can be constructed as the union of the
2(m/2)Z2N lattice translated by codewords of Reed-
Muller codes, where m = n − r when n − r is even,
and m = n− r + 1 when n− r is odd. For example,
using Forney’s expression, the Gosset (E8) lattice can
be written as

E8 = Λ(0, 2) = 2Z8 + (8, 4, 4),

where the sum is a direct sum and (8, 4, 4) is the
(n, k, d) Reed-Muller code with block length n, k in-
formation bits, and minimum Hamming distance d
[21]. The above expression shows that the E8 lattice
is obtained as the union of Z8 lattice scaling by a fac-
tor 2 and translated by each codeword of the (8, 4, 4)
RM code. It also tells us that performing LVQ using
the E8 lattice is equivalent to performing LVQ using
the 2Z8 lattice plus its 15 cosets (the 2Z8 lattice is
itself the zero coset).

Now, consider the following choice of lattices : 256-
dimensional Barnes-Wall lattice, Λ256, for vectors of
size 256, and 64-dimensional Barnes-Wall lattice, Λ64

for vector dimension 64 [15]. Using Forney’s expres-
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sion, Λ64 can be represented as

Λ64 = Λ(0, 5)

= 8Z64 + (64, 7, 82) + 2(64, 42, 8)

+ 4(64, 63, 2), (3)

where (64, 7, 82), (64, 42, 8), and, (64, 63, 2) are Reed-
Muller codea and the sum is a direct sum. Eq. (3)
suggests that LVQ using Λ64 is equivalent to LVQ us-
ing the 8Z64 (the 64-dimensional integer lattice scaled
by the factor 8) combined with additional similar
vector quantizations using its 27 + 242 + 263 cosets.
For Λ256, the number of cosets is far larger than
this. Due to the complexity of using the 256- or 64-
dimensional Barnes-Wall lattices for VQ, we instead
use the simple integer lattice for these dimensions.
The 16-dimensional Barnes-Wall lattice, Λ16 and D4

lattice [15] are used to quantize 16-dimensional and 4-
dimensional vectors, respectively. An effective quan-
tization algorithm for the Dn lattice is described in
[15]. The Λ16 lattice can be expressed as [20]

Λ16 = 2D16 + (16, 5, 8). (4)

The above expression suggests a simple way to per-
form LVQ using Λ16. Let ci, for i = 1, . . . , 32, be
the binary codewords of the (16,5,8) RM code. Let’s
denote the 16-dimensional input vector formed by an
image block of size 4×4 as x and the lattice codevec-
tor as y. Then, LVQ using Λ16 can simply be done
as follows.

0) Let y = V Q2D16(x) denote lattice VQ using the
2D16 lattice.
1) For i = 1 to 32, form yi = ci + V Q2D16(x− ci).
2) Find i∗ = argmini||x− yi||2.
3) The Λ16 codevector closest to x is yi∗ .

Since the proposed algorithm with LPVQ outper-
formed LSVQ in Section 4, the subsequent simulation
results are based on LPVQ. Table 1 shows the sim-
ulation results of the proposed algorithm using only
integer lattice, and that using the integer lattice to-
gether with the D4 and Λ16 lattices for 4-dimensional
and 16-dimensional vectors, respectively. To com-
pare with the results when only the integer lattice
is used, the D4 and Λ16 lattices are scaled by the fac-
tors 1/1.1892 and 1/1.6818, respectively, to have the
same point density as the integer lattice12.

1D4 has point density half of that of Z4. This corresponds
to a rate difference of 1 bit per 4 dimensions, or 0.25 bits
per dimension. It implies that by scaling D4 lattice with the
factor g, denote scaled D4 as Dg

4 , the rate of Dg
4 must be

higher than unscaled D4 by 0.25 bit. Using this and by the
fact that at high rate, the encoding rate can be approximately
as 0.5 log2(σ

2/D), we get g2 = 1/(20.5), or g = 1/(20.25) =
1/1.1892.
2 Similar to D4, point density of Λ16 is 1/(212) of that of
Z16. This corresponds to a rate difference of 12 bits per 16
dimensions, or 0.75 bits per dimension. Then, we get g2 =
1/(22(0.75)), or g = 1/(20.75) = 1/1.6818.

Table 1: Performance comparison of proposed
method with LPVQ using integer lattice, and D4 and
Λ16 lattices

Image
Rate PSNR (dB)

(bpp.) LPVQZ LPVQLat

Lena

0.125 31.13 30.85

0.25 34.05 33.75

0.5 37.15 36.85

1.0 40.54 40.15

Barbara

0.125 25.29 25.19

0.25 28.05 27.67

0.5 31.59 31.34

1.0 36.53 36.12

Goldhill

0.125 28.48 28.32

0.25 30.54 30.25

0.5 33.11 32.89

1.0 36.68 36.17

Aerial

0.125 23.54 23.34

0.25 25.86 25.49

0.5 28.83 28.43

1.0 33.14 32.57

Aerial2

0.125 26.60 26.47

0.25 28.54 28.41

0.5 30.65 30.52

1.0 33.45 33.36

LPVQZ : LPVQ using Z-lattice.

LPVQLat: LPVQ using Z together with D4 and Λ16 lattices.

From the table, it is perhaps surprising that the
simulation results using the integer lattice together
with D4 and Λ16 lattices (LPVQLat) provides lower
PSNR than using only the integer lattice (LPVQZ)
at the same encoding rate. However, this is consis-
tent with the work of Gao, Belzer, and Villasenor
[22], that shows that at low encoding rate, LVQ us-
ing the Z-lattice provides performance superior to
LVQ using other better covering lattices such as the
E8 or Leech lattices. This follows from the obser-
vation that wavelet coefficients can be modeled well
using a generalized Gaussian distribution [23] with
low shape parameter (also shown in Fig. 1) and the
Voronoi regions of the Z-lattice are better suited with
the anisotropicity of the generalized Gaussian den-
sity which has more vectors along the coordinate axes
than off-axis. This effect influences significantly the
performance of LVQ at low encoding rates. For high
encoding rates, LVQ using lattice with higher gran-
ular gain still provides better performance. For our
simulations with the Lena image, this occurs at en-
coding rates higher than about 2 bpp, and LPVQLat

begins providing better performance over LPVQZ . It
should be emphasized that this particular effect oc-
curs with input source of low-shape-parameter gen-
eralized Gaussian distribution, but not of Gaussian
distribution.
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Table 2: Performance comparison for several images
Coding PSNR (dB)

Method 0.0625 bpp. 0.125 bpp. 0.25 bpp. 0.5 bpp. 1.0 bpp. 2.0 bpp.

Lena (512× 512)

JPEG2000 28.05 31.22 34.28 37.43 40.61 44.84

SPIHT-AC 28.38 31.10 34.11 37.21 40.41 45.07

SPECK 28.16 30.96 33.99 37.09 40.24 44.72

LPVQZ 28.54 31.13 34.05 37.15 40.54 45.34

Barbara (512× 512)

JPEG2000 23.38 25.55 28.55 32.48 37.37 43.17

SPIHT-AC 23.35 24.85 27.58 31.40 36.41 42.65

SPECK 23.36 24.93 27.69 31.48 36.44 42.46

LPVQZ 23.53 25.29 28.05 31.59 36.53 42.52

Goldhill (512× 512)

JPEG2000 26.56 28.33 30.46 33.18 36.58 41.93

SPIHT-AC 26.72 28.37 30.48 33.08 36.56 42.00

SPECK 26.62 28.27 30.33 32.85 36.32 41.57

LPVQZ 26.91 28.51 30.54 33.11 36.68 41.70

Aerial (512× 512)

JPEG2000 21.27 23.10 25.42 28.71 33.19 39.82

SPIHT-AC 21.52 23.20 25.57 28.73 33.17 39.81

SPECK 21.42 23.13 25.44 28.51 32.85 39.53

LPVQZ 21.92 23.54 25.86 28.83 33.14 39.59

Aerial2 (2048× 2048)

JPEG2000 24.63 26.51 28.58 30.64 33.28 38.14

SPIHT-AC 24.63 26.52 28.49 30.60 33.32 38.22

SPECK 24.51 26.40 28.39 30.53 33.16 37.99

LPVQZ 24.83 26.60 28.54 30.65 33.45 38.29

The LPVQZ encoding performance is compared to
other well-known coding methods. The comparison is
shown in Table 2. The JPEG2000 encoding is done
using OpenJPEG [25] and the SPECK encoding is
done using QccPack [26]. From Table 2, it can seen
that the performance of LPVQZ is competitive with
JPEG2000 and SPIHT-AC, but is slightly better than
SPECK. At low encoding rate (<= 0.5 bpp), LPVQZ

slightly outperforms the other encoding methods, ex-
cept JPEG2000. For some images such Goldhill and
Aerial and at very low encoding rates, LPVQZ pro-
vides PSNR increase of about 0.2-0.4 dB. This sug-
gests that the proposed method is particularly effec-
tive at low encoding rates.

5. CONCLUSION

In this paper, we propose an algorithm based on
LPVQ and LSVQ for image coding. The proposed
algorithm partitions the subband (or wavelet) image
into blocks of various sizes by comparing ℓ1 or ℓ2
block energy, respectively, with the thresholds defined
according to complexity constraints on enumeration
encoding of lattice points. We show that based on
the proposed algorithm the energy clustering can be
exploited effectively. From the simulations, the pro-
posed algorithm with LPVQ provides a performance

little better than SPECK algorithm, and competitive
with JPEG2000 and SPIHT using arithmetic coding.
The proposed algorithm works very well at low encod-
ing rates. Coding blocks or sets of coefficients using
LVQ also allows the possible improvement in SNR by
using better covering lattices, such as D4 or E8 or
Λ16. However, the above results show that LVQ us-
ing better covering lattices to encoding wavelet coef-
ficients gives higher PSNR over LVQ using Z-lattice
only at higher encoding rates. It should be noted
that for some images the granular fidelity of lattices
may possibly provide better visual quality of decoded
image compared with SPIHT [27]. Future work will
emphasize modifying the LSVQ and LPVQ encoding
to provide an embedded bitstream which will allow
progressive transmission of images.
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