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Abstract 

 

Forecasting the daily load demand of an electric utility provider is a complex problem as it is nonlinear and influenced by 

external factors. Deep learning, machine learning and artificial intelligence techniques have been successfully employed in 

electric consumption load, financial market, and reliability predictions. In this paper, we propose the use of a deep neural 

network (DNN) for short-term load forecasting (STLF) to overcome nonlinearity problems and to achieve higher forecasting 

accuracy. Historical data was collected every 30 minutes for 24 hour periods from the Electricity Generating Authority of 

Thailand (EGAT). The proposed techniques were tested with cleaned data from 2012 to 2013, where holidays, bridging 

holidays, and outliers were replaced. The forecasting accuracy is indicated by the mean absolute percentage error (MAPE). In 

this paper, there are two different training datasets, everyday training dataset which is arranged by day sequentially and same 

day training dataset which is separated seven groups of day (for e.g., only Monday training is used to forecast Monday). The 

outcomes of a deep neural network (DNN) are compared with an artificial neural network (ANN) and support vector machines 

(SVM) with an everyday training dataset. The empirical results reveal that the proposed DNN model outperforms the ANN 

and SVM models. Moreover, the DNN model trained with same day training datasets provides better performance than a DNN 

trained with an everyday training dataset for weekends, bridging holidays, and Mondays. Additionally, the DNN using a same 

day training datasets provides higher accuracies for December and January. 
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1. Introduction 

  

 Load forecasting plays an important role in supplying 

electric utilities so that they can make correct decisions on 

electrical power generation, transmission and distribution. 

Electricity load forecasting can be classified into long-term, 

medium-term and short-term needs. These forecast durations 

can be up to one year, one month and one day, respectively. 

Long-term and medium-term forecasting are usually used in 

the generating stations and for transmission lines in the 

power system. However, short-term load forecasting plays 

an imperative role in the security of the security of the power 

conducting system and in predicting operating costs. 

Therefore, short-term load forecasts are more focused due to 

the growth of competitive in energy markets. 

 Forecasting techniques that are applied for load 

forecasting can be classified into two sub-groups, traditional 

statistical models and artificially intelligent models. 

Traditional statistical models include regression analysis [1], 

moving averages [2], exponential smoothing [3], and 

stochastic time series models [4]. Artificial intelligence 

techniques include support vector machines [5], artificial 

neural networks [6], and fuzzy time series [7]. Neural 

networks are the most popular artificial models for nonlinear 

time series problems [8]. However, if there are multiple 

hidden layers, neural networks do not work very well 

because of backpropagation [9]. These take a very long time 

and sometimes converge an incorrect local minimum and 

have slow convergence. To overcome these complex 

problems, deep learning was introduced. 

 In this research, a deep neural network (DNN) is 

proposed to achieve higher performance and accuracy for 

daily load forecasting. This paper is organized as follows. 

First, the paper reviews related work and the literature. Then, 

three models, methodology and data arrangement are 

presented. Finally, outcomes are discussed to compare 

forecasting results of the three different methods.   

 

2. Literature review 

 

 Warren McCulloch and Walter Pitts previously 

considered an artificial neural network (ANN) in 1943 [10]. 

Many researchers have shown that an ANN is an excellent 

tool for use in several areas including medicine, business, 

communications, and industrial process control. ANNs are 

very popular computational models. They are influenced by 

the structure and functional aspects of biological neural 

networks. A neural network is composed of an 
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interconnected group of artificial neurons. It computes the 

targets by processing information using a connection. During 

the learning process, an ANN is an adaptive system that can 

change its structure depending on external information 

flowing through the network. Modern neural networks are 

usually used to model complex relationships between inputs 

and outputs to find patterns in data.  

 In the late 1980’s and early 1990’s, ANNs were applied 

to forecast load demand in electric power systems [6, 11-12]. 

Jeenanunta and Abeyrathna adjusted the parameters of an 

ANN to enhance the forecasting accuracy using a transfer 

function [13]. A feed-forward neural network with the 

Levenberg-Marquardt algorithm performed well yielding 

better forecasting accuracy for electricity load demand [14]. 

ANNs rely on several parameters such as the number of 

invisible layers, backpropagation algorithms and selected 

input variables to improve the accuracy for STLF [15]. They 

have become very popular among machine leaning 

techniques, however, there are drawbacks to train the model 

and obtain better forecasting results due to the weaknesses of 

the backpropagation algorithm [16]. 

 Deep neural networks (DNN) are commonly based on 

ANNs with multiple hidden layers and an approximation 

error that can be reduced by adding many hidden layers 

between the input and output layers. Deep architectures are 

used to achieve better representation and capture higher level 

abstractions. Quan et al. applied an ensemble deep belief 

network with one artificial dataset and three regression 

datasets to execute time series and regression predictions 

[17]. 
 DNN has been successfully applied in the last few years. 

Several researchers have produced outstanding results in the 

fields of regression, image classification, automatic speech 

and face recognition, natural language processing, and 

bioinformatics. There are various DNN architectures such as 

long short-term memory [18], recursive neural networks 

[19], convolutional neural networks [19], and deep belief 

networks [20]. Each of them uses computational methods 

that are comprised of numerous hidden layers to learn 

representations of data at various abstraction levels. They 

also can detect complex structures in large data sets using 

backpropagation to overcome the drawbacks of machine 

learning.  

 The feed-forward multilayer perceptron, which is one of 

deep neural network models, was introduced for supervised 

learning algorithms [21]. A deep belief network was also 

applied to forecast load demand for hourly electricity 

consumption data in Macedonia [22]. Moreover, El-Sharkh 

and Rahman presented a multilayer perceptron, radial basis 

and recurrent neural network (RNN) with a parallel structure 

ANN that gave better results compared to standard time 

series methods [23]. Rashid et al. proposed a RNN with an 

internal feedback structure for electricity load prediction that 

showed reliable and robust results [24]. Moreover, a 

nonlinear auto-regressive RNN provided smoothly 

forecasted results, in contrast with previous studies for 

hourly predictions of high resolution wave power [25]. 

 In addition to ANN and DNN, support vector machines 

(SVM) were introduced for STLF. This approach 

outperformed an autoregressive model [5]. Moreover, 

Mohandes found that improvement of performance for a 

SVM depends on increasing the size of the training dataset. 

Chen et al. showed that an SVM with seasonal factors could 

enhance the forecasting performance and that the 

temperature factor could not influence mid-term load 

forecasting [26]. Moreover, Support Vector Regression 

(SVR) outperformed other nonlinear models to solve 

nonlinear, non-stationary and a-priori undefined problems 

[8]. A recurrent support vector machine combined with 

genetic algorithms was developed, which determined the 

parameters of a SVM. It was applied to forecast a regional 

electricity load [27]. The forecasting performance using a 

hybrid model obtained higher forecasting accuracies than 

regression, SVM and ANN models. Researchers applied 

several hybrid models with SVR to improve dynamic high-

performance accuracy for STLF [28-29]. 

 

3. Methodology 

 

 In this research, we propose three forecasting techniques 

to predict the electricity load demand and compare the 

forecasted results. The first model is an artificial neural 

network which can be applied to learn complex nonlinear 

problems. In the training process of an ANN model, only one 

hidden layer and a sigmoid activation function is used. A 

simple backpropagation algorithm is employed for training 

the model. Second, we use a deep neural network (DNN) that 

is able to learn end-to-end without manually adding features.  

This DNN model used 50 hidden layers and 50 hidden nodes 

in its network. Moreover, the activation function is selected 

as a rectified linear unit (RELU) function instead of a 

sigmoid function to solve vanishing problems. It is the most 

popular non-linear function. It can learn much faster in 

networks with many layers by allowing training of deeply 

supervised networks without unsupervised pre-training. In 

the backpropagation algorithm, the model is optimized using 

a stochastic gradient descent (SGD) before updating 

parameters at every step.  It tends to converge to a global 

minimum much faster than an ordinary gradient descent. 

Finally, the last model is a support vector machine (SVM) 

using a kernel function and quadratic programming to find a 

large solution space with better performance. RapidMiner 

tool is used as software platform for integrating all proposed 

models .The detailed procedures of each forecasting model 

is discussed below. 

 

3.1 Artificial neural network 

 

 An artificial neural network model is used as simple 

feed-forward neural network trained using a 

backpropagation algorithm. Figure 1 represents an artificial 

neural network structure. In the feed-forward process, the 

information is only moving in the forward direction from the 

input nodes x passing through the hidden nodes to the output 

nodes y with no cycling or looping in the network. The model 

uses a simple sigmoid activation function (f) to produce 

output values (y). Afterwards, the network updates its 

weights (w) using a backpropagation algorithm [15]. 
 

 
 

Figure 1 Artificial neural network structure
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 In the backpropagation algorithm, the predicted output 

values are compared with the target values to calculate the 

value of some predefined error function. By feeding the error 

back through the network, the algorithm adjusts the weights 

of each connection to minimize error by some amount 

depending on the specified learning rate. This training 

process is repeated until the performance of the network is 

sufficient and the network converges to a small error. 

 

3.2 Deep neural network 

 

 Deep learning is an approach to train a DNN model 

consisting of a large number of processing layers. Deep 

neural networks are a class of neural network models that 

have an input layer, an output layer, and a large number of 

hidden layers. In Figure 2, the input layer x and the output 

layer y are referred by the bottom and the top layers 

respectively. The layers between x and y represent hidden 

layers (h) of the network which perform as a black box. 

 

 
 

Figure 2 Deep neural network structure 

 
 The DNN model trains a feed-forward network to 

generate the corresponding output values through all of the 

hidden layers and neuron nodes in a forward propagation. In 

this research, the model uses rectified linear unit (RELU) as 

an activation function while similar research problems have 

been solved using only a sigmoid activation function. The 

RELU uses a tanh function that is not bounded or 

continuously differentiable. This function is piece-wise 

linear and saturates at 0 whenever the input x is less than 0. 

Equation 1 indicates that a nonlinear activation function f  

takes a weighted sum of input x values and returns a value 

for ℎ𝑗
𝑙 [21]. 
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where, 

 ℎ𝑗
𝑙  = the jth hidden node in layer l, 

 xi    = the ith input, 

 𝑤𝑖𝑗
𝑙

 = the weight between node i in layer (l-1)  

                and node j in layer l, 

 f     = activation function. 

 The main objective is to minimize the error of a 

calculated output value. Therefore, the network compares 

predicted output values with actual values. Next, the 

proposed model minimizes error using a stochastic gradient 

descent (SGD) algorithm before updating the weights [9].  

 The objective of using SGD is to overcome speed 

convergence obstacles and avoiding local minima. At first, 

the training data are shuffled at each iteration of the training 

network during the SGD process. Next, all of the weights are 

updated using only one sample or a few training samples. To 

reach a global minimum, a SGD updates weights frequently 

in the direction of the gradient of the loss function, which is 

the error between target and output at every iteration. Unlike 

an ordinary gradient descent, a SGD selects a single dataset 

instead of all datasets to compute the gradient at each 

iteration. Equation 2 describes updating the weights in the 

SGD process [9]. 

                                                

),;( )()( kkold

w
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where, 

 wnew  = updated weight value, 

 wold    = old weight value, 

 J       = gradient value, 

 η       = learning rate, 

       (x(k), y(k)) = a pair of a training sample at the kth iteration. 

  

 In general, most gradient optimization methods converge 

effectively when using the full training set. A SGD can 

converge much faster than ordinary gradient descent 

methods because it is less memory intensive since it uses one 

dataset at a time [9]. Furthermore, SGD has the ability to 

obtain a meaningful update without iterating over the entire 

dataset to overcome redundancy in the datasets.  Moreover, 

if the loss function is convex, using SGD is guaranteed to 

find a global minimum. A SGD can obtain better 

performance for big DNN models and large data sets. 

 

3.3 Support vector machine 

 

 Support vector machines (SVM) are computational or 

mathematical models to solve complex problems [5]. A 

SVM can be used for regression, classification and other 

tasks. It also can learn very fast and provide good results for 

many tasks. In the training process, a SVM uses linear, 

quadratic and asymmetric loss functions. A support vector 

machine usually sets up a hyperplane or set of hyperplanes 

in a high or infinite-dimensional space. The hyperplane 

might have the largest distance to the nearest training data 

points of a functional margin to achieve good separation. A 

sets of hyperplanes separate nonlinear groups in a finite 

dimensional space. 

 The original finite-dimensional space approaches map 

into a higher-dimensional space by making discrimination 

easier in that space. Therefore, in this study, we use two 

essential factors for the implementation of SVM. The first 

factor is the kernel model to get a large amount of solution 

space. The other is the use of a quadratic function to adjust 

SVM parameters in the entire training process. In Figure 3, 

there is an input variable x and an output variable y. The 

objective of a SVM is to map the input data into a 

higher-dimensional space using a non-linear mapping and 

conduct a linear regression. 
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Figure 3 Support vector machine structure 

 

 
 

Figure 4 Sample dataset for a walk-forward testing routine 

 

4. Training data and testing data 

 

 A collection load data every 30 minutes from 1 March 

2009 to 31 December 2013 was supplied by the Electricity 

Generating Authority of Thailand (EGAT). This data was 

collected from five different regions, i.e., Metropolitan 

Bangkok, the Central, South, North and Northeast regions of 

Thailand. There was low electricity demand with only one 

peak load curve at night in three regions, the South, North, 

and Northeast. Conversely, there was high electricity 

demand with three peak load curves in two regions, i.e., 

Metropolitan Bangkok and the Central region. In the current 

study, only Metropolitan Bangkok was considered because 

of its large load demand and high variations. 

 In previous studies, two approaches were used for 

developing machine learning models. The first is to divide 

the whole dataset into two parts, training and testing datasets. 

The other approach is to divide the dataset into three parts, 

training, validation and testing datasets [11, 30-32]. This 

research was conducted using the first approach since the 

proposed models are fitted without tuning any parameter in 

the training process. In other words, simple models do not 

over-fit the training data.  

 In this research, the data is separated into two datasets, 

i.e., training and testing datasets. Both datasets are arranged 

as paired inputs and targets to train and test the models. We 

select a one-year dataset from 7 May 2012 to 30 May 2013 

to train the models. Thus, there are 388 days in our training 

dataset in the ANN, SVM, DNN1 models. As a result, all 

models have to be trained with 388 datasets to test a one-day 

forecast. In the DNN2 model, there are 52 training datasets 

for each test dataset. Once the model is applied to the test 

dataset, the forecasting performance is determined. Then the 

data is slid to consider the next 52 training dataset and 

perform the same procedure. This procedure is called a 

“walk-forward testing routine” as depicted in Figure 4. 

 The original historical data must be cleaned because 

there are many holidays, missing values, and outliers that 

affect the results. If these outliers are included in the training 

data, the accuracy of load predictions would be lower. We 

categorize load patterns into five categories, Mondays, 

weekdays, weekends, holidays and bridging holidays as 

shown in Figure 5. If Thursday and Saturday are holidays, 

we consider Friday as a bridging holiday. For example, since 

there are eight days for weekends in a month, we take the 

average load in each period from all weekends in January 

2013 to calculate average load for each category. It can be 

clearly seen that holiday and bridging holiday load patterns 

are very different from other load patterns. Consequently, we 

apply a weighted moving average to replace the holidays and 

bridging holidays. 

 Furthermore, we detect outliers using a time-window 

based filtering band as there is a similar pattern in the same 

time period and the same day of week. We arrange the 

dataset consisting of the same weekday and same time period 

to construct the filtering band of each weekday and each time 

period. We construct a time-window based filtering band 

using a four week moving average and standard deviation 

with same time period and day of the week. After that, all of 

the data outside the filtering band are regarded as outliers and 

replaced by a two weeks moving average. 

 Selection of input variables is one of the main steps for 

forecasting. There are many external factors affecting the 

load such as temperature, time (hour of day, day of week, and 

month of year), and weather conditions among others. 

Among these, temperature is the most influential factor. It is 

associated   with   meteorological   situations.   In   this   study,  
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Figure 5 Load patterns for five categories 

 

Table 1 Everyday training data arrangement for testing target 1 June 2013 

 

   Input Target 

Training 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) DoW MoY Ft(d) 

1 
01/05/12 

(Tue) 

07/05/12 

(Mon) 

07/05/12 

(Mon) 

08/05/12 

(Tue) 

1 5 

 

08/09/12 

 (Tue) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

388 
23/05/13 

(Fri) 

29/5/13 

(Thurs) 

29/5/13 

 (Thurs) 

30/05/13 

(Fri) 

4 5 

 

30/05/13 

(Fri) 

   Input Output 

Testing 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d)  MoY Ft(d) 

1 
25/05/13 

(Sat) 

31/05/13 

(Fri) 

31/05/13 

(Fri) 

01/06/13 

(Sat) 

 1 

 

01/06/13 

(Sat) 

data selected as input that is directly proportional to the load 

demand. In DNN, ANN, and SVM models, there are six 

input variables, the previous day’s load, previous week’s 

same day load, previous day’s temperature, forecasted day’s 

temperature, day of week (DoW) and month of year (MoY), 

as in Equation (3). The basic forecasting equation is given 

by: 

                               

MoYDoWdTb

dTbdLbdLbdF

t

tttt





)(

)1()7()1()(

4

321            (3) 

 

where,  

 Ft (d) = Forecast load at period t for day d, 

 Lt (d-1)   = Load   at   period t for day d-1 (yesterday’s 

load) 

 Lt (d-7)   = Load at period t for d-7 (previous week                         

same day), 

 Tt (d-1)   = Temperature at period t for d-1  

  (yesterday’s temperature), 

 Tt (d)       = Forecast day’s temperature at period t for 

day d, 

 DoW      = Day of Week (1, 2, …, 7), 

 MoY      = Month of Year (1, 2, …, 12), 

 t             = 1, 2, 3, …, 48 periods, 

 b1, …, b5 = coefficients of load and temperature. 

  

 According to the above equation, all models take six 

inputs to forecast the next day’s load.  Table 1 shows that 

there are 388 pairs data in the training dataset from May 1 

2012 to May 30 2013 to forecast the load of June 1, 2013. 

This data arrangement is noted as an everyday training 

dataset. After completing the training, each model will be 

tested using one testing dataset. In this case, the goal is to 

forecast June 1, 2013. Once we complete the testing dataset, 

the models are trained with 388 new rolling pairs of data and 

they are tested for the next forecasting day, June 2, 2013. 

 Additionally, we propose another data arrangement with 

five input variables. This data arrangement is called the same 

day training dataset and it is used with DNN. For this DNN 

model, we selected five input variables, i.e., yesterday’s load, 

previous week same day load, yesterday’s temperature, 

forecasted day’s temperature, and month of the year (MoY) 

as in Equation (4). The basic forecasting equation is written 

as: 

                               

MoYdTb

dTbdLbdLbdF

t

tttt





)(

)1()7()1()(

4

321               (4) 

 

where,  

 Ft (d)     = Forecast load at period t for day d, 

 Lt (d-1)  = Load at period t for day d-1 (yesterday’s 

load), 

  Lt (d-7)  = Load at period t for d-7 (previous week same 

day)   

 Tt (d-1)  = Temperature at period t for d-1 (yesterday’s 

temperature),  

 Tt (d)     = Forecast day’s temperature at period t for day 

d, 

         MoY      = Month of Year (1, 2, …, 12), 

   t            = 1, 2, 3, …, 48 periods, 

 b1, …, b5 = coefficients of load and temperature. 

 

 This second training dataset is arranged to use the same 

day for the target as shown in Table 2. In this table, the target 

day is always on Saturday. The training dataset consists of 

52 datasets. It also includes Friday’s load as yesterday’s 

input when the model predicts Saturday’s load, as shown in 

Table 2.   
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Table 2 Same day training data arrangement for the testing target on 12 Jan 2013 

 
  Input Target 

Training 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) MoY Ft(d) 

1 
07/01/12 

(Sat) 

13/01/12 

(Fri) 

13/01/12 

(Fri) 

14/01/12 

(Sat) 

1 

 

14/01/12 

 (Sat) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

52 
22/12/12 

(Sat) 

28/12/12 

(Fri) 

28/12/12 

(Fri) 

29/12/12 

(Sat) 

12 

 

29/12/12 

(Sat) 

  Input Output 

Testing 

No. Lt(d-7) Lt(d-1) Tt(d-1) Tt(d) MoY Ft(d) 

1 
05/01/13 

(Sat) 

11/01/13 

(Fri) 

11/01/13 

(Fri) 

12/01/13 

(Sat) 

1 

 

12/01/13 

(Sat) 

 

Table 3 Monthly MAPEꞌ in 2013 for ANN, SVM, DNN1, and DNN2. 

 

Month ANN SVM DNN1 DNN2 Number of holidays 

Jan 6.2233 6.8384 4.9290 4.1814 1 

Feb 4.8546 4.7640 3.5650 4.9687 1 

Mar 4.0913 4.6069 3.0386 3.7373 - 

Apr 5.2078 5.8053 4.3674 3.4356 7 

May 4.6311 5.3445 4.0751 4.0455 5 

Jun 3.6040 4.6400 3.2080 3.8653 - 

Jul 4.8488 5.8225 4.4771 4.1947 3 

Aug 3.2853 3.8207 2.4050 3.7734 1 

Sep 3.1977 3.9151 2.5414 4.0620 - 

Oct 3.9449 4.3180 3.1084 4.4549 1 

Nov 3.5938 4.1131 2.7328 4.5204 - 

Dec 11.9294 13.1251 12.3886 6.8291 4 

Total Average 4.9510 5.5928 4.2364 4.3390  

 

 The main objective of all models is to minimize 

forecasting errors. In most previous studies, the mean 

absolute percentage error (MAPE) is commonly used as an 

accuracy measurement. This is how many units the forecast 

result deviates from the original data. However, in this study, 

we modify the MAPE calling it MAPEꞌ and using cleaned 

data instead of the original data since the original data is 

cleaned by a time-window based method to remove outliers. 

The mean absolute percentage error (MAPEꞌ) is an accuracy 

measurement comparing the cleaned load and the forecasted 

load. 

The mean absolute percentage error (MAPEꞌ) is: 

                                   

,100
)(

)()(1
0

0

48

1
'

'
' 


 

t t

tt

dL

dFdL

t
MAPE                                         (5) 

 

where,  

 Ft (d)    = Forecast load at period t for day d, 

 𝐿𝑡
′

 (d)    = Cleaned load at period t for day d, 

 t     = 1, 2, 3, …, 48 periods. 

 

5. Result and discussion 

 

 In this research, we use a DNN model with two different 

data structures to predict the daily load. The first one is 

referred to as DNN1 and it is tested using an everyday 

training dataset. The second one is referred to as DNN2 

which applies the same day training dataset to train the 

model. All models, including ANN and SVM, use cleaned 

data to train and test. Additionally, ANN and SVM use an 

everyday training dataset. Table 3 shows the summarized 

monthly MAPEꞌ outcomes using four different forecasting 

models for each month in 2013. 

 According to the Table 3, it is clear that the performance 

of DNN1 is better than the ANN and SVM models as its 

results produced a smaller MAPEꞌ. The MAPEꞌ of December 

is significantly higher than the rest of the months due to 

higher fluctuation in load. The forecast result is especially 

different from the actual load results due to the Christmas 

season and an unexpectedly high tourist presence in 

Thailand. Figure 6 shows the monthly average loads for 

October, November, and December. The average load in 

December is lower than the previous two months because of 

a lower average temperature. The variation still continues in 

the month of January with more unexpected tourists and New 

Year celebrations. 
 Electricity consumption is high from April to July due to 

high temperatures. This is because peak load demand is 

proportional to temperature and thus it increases as the 

weather becomes hotter. However, during the month of June, 

there are no holidays which results in similar pattern in the 

load. Fluctuations in the load are low during the months from 

August to November resulting in better forecast results, thus 

low MAPEꞌ.  

 Comparing the two data arrangements, DNN2 provides 

better accuracy than DNN1 for months which there are many 

holidays, April, May, and July. Consequently, using a same 

day training dataset is good for predicting loads in months 

which have many holidays. However, the everyday training 

dataset gives better performance for other months. 

Moreover, the MAPEꞌ for DNN1 has almost twice the error 

of DNN2 in December. 

 We summarize the MAPEꞌ into six categories based on 

the load patterns. These are weekdays, weekends, Mondays, 

holidays, bridging holidays, and total average to compare the 

results. According  to Table 4, ANN, SVR  and  DNN1  yield 
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Figure 6 Comparison of average load curves for October, November, and December 2013. 

 

Table 4 Comparing MAPEꞌ in 2013 for day type categories 

of ANN, SVM, DNN1 and DNN2. 

 

 ANN SVM DNN1 DNN2 

Weekdays 4.1471 4.3409 3.3206 5.2315 

Weekends 4.8538 5.7487 4.2273 3.1795 

Monday 5.6348 7.4658 4.5151 3.7454 

Holidays 10.2910 11.6927 10.6844 3.7034 

Bridging holidays 6.2243 6.4526 5.9337 3.1571 

Total average 4.9649 5.6185 4.2544 4.3378 

 

Table 5 Relationship between computation time taken and 

techniques used. 

 

 ANN SVM DNN1 DNN2 

Computation 

time  

1 min 

22 sec 

1 min  

41 sec 

2 min  

46 sec 

1 min  

44 sec 

 

the highest errors for holidays and bridging holidays because 

these load patterns are different from those of normal 

weekdays. 

 The results of MAPEꞌ on Monday also have lower 

accuracy since we use Sunday’s data as an input to forecast 

Monday. However, the load on Sunday is normally smooth 

and lower than on Monday. Additionally, the MAPEꞌ values 

on the weekends are generally worse than weekdays for 

ANN, SVM and DNN1. This occurs because we use Friday 

as an input to forecast Saturday. Using the same day training 

dataset improves the forecasting accuracy for Mondays, 

weekends, and bridging holidays. 

 The RapidMiner software platform is used in this 

research study to integrate data preparation, optimization 

techniques, machine learning and deep learning techniques. 
The computation time required for each technique is shown 

in Table 5. 

 

6. Conclusions 

 

 In this study, we utilized three powerful forecasting 

techniques, DNN, ANN and SVM to solve nonlinear 

problems in STLF. Historical 30 minute load data from 2009 

to 2013 was obtained from the Electricity Generating 

Authority of Thailand (EGAT). All techniques were trained 

and tested using cleaned load data that included outside 

temperature, day of week, and month of year to develop daily 

forecasts in 2013.  

 There are two training dataset structures, everyday 

training and same day training. All three models were trained 

with the everyday training dataset and used to predict each 

daily load demand for 2013. Moreover, the DNN model was 

also trained with the same day training dataset to compare 

performance. 

 The proposed DNN model with the everyday training 

dataset obtained better forecasting performance, compared to 

the ANN and SVM models for every month in 2013 except 

December. Furthermore, the DNN model also performed 

better for weekdays, weekends, Mondays, and bridging 

holidays. This empirical result shows that DNN is a 

promising model for electricity load forecasting in the 

electric power industry. 

 Additionally, we propose a DNN model using the same 

day training dataset to predict daily load. For this second 

training dataset, we used five inputs to train the model. After 

using same day training dataset, the DNN model yielded 

improved MAPEꞌ results for bridging holidays, Mondays, 

and weekends. Moreover, it also gave higher accuracy for 

January and December which normally have the lowest 

accuracy compared to other months of the year. The forecast 

for December had the highest MAPEꞌ result since it had the 

lowest temperature and hence the lowest load demand. In 

future research, various time series forecasting models and 

data features may be investigated to improve forecasting 

performance.  
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