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Abstract 

 

In present investigation, we studied the elastic, ultrasonic and thermal properties of SnAs, InTe and PbSb. The Coulomb and 

Born-Mayer potential model was utilized to compute the second and third order elastic constants up to second nearest neighbor. 

The direction dependent ultrasonic velocities for longitudinal and shear waves, Debye average velocity and mechanical 

constants such as bulk modulus, shear modulus, tetragonal modulus, Young’s modulus, Poisson ratio, Pugh’s indicator (shear 

modulus to bulk modulus ratio) and Zener anisotropy ratio were obtained with the use of the second order elastic constants 

and the density of the chosen materials. Since the Pugh’s indicator is greater than 0.59 for all chosen materials, they have a 

brittle nature. Further the second and third order elastic constants with other associated acoustical parameters were used to 

compute the Debye temperature, thermal relaxation time, acoustic coupling constant and ultrasonic attenuation. The total 

ultrasonic attenuation is the smallest in the case of InTe along the <100> direction and highest for SnAs along the <111> 

direction. Thermo-elastic loss is insignificant in comparison to the loss due to the phonon-phonon interaction mechanism. 

Additionally, the thermal conductivity of these materials was found using Cahill’s approach. The results of this investigation 

are discussed with the available findings and for other rock salt structured materials. 
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1. Introduction  

 

 B1-structured superconductors have stimulated major 

interest among theorists and experimentalists around the 

scientific world since the 1960s. The chief motivation for this 

awareness is to recognize the source of superconductivity 

simply by the peculiar characteristics of B1-structured 

superconductors. The physical properties of B1-structured 

InTe, SnAs and PbSb superconductors have drawn 

considerable interest in theoretical and experimental studies 

[1-12]. Banus et al. [1] showed that metallic InTe (II) had a 

B1-structure with a0 = 6.154 Å with transition temperature of 

3.5 K in a superconducting phase.  Geller and Hull [2] first 

predicted the superconductivity properties of SnAs and InTe 

in a rock-salt structure. The XRD technique was applied to 

investigate phase transition from the tetragonal to a face 

centered cubic phase at 340 kBar by Chattopadhyay et al. [3]. 

Wang et al. [4] studied the superconductivity of SnAs in a 

NaCl-structure. They predicted that SnAs exhibits weakly 

coupled type-1 superconductivity and Sn has a single valence 

state such as Sn3+ (5s1). The superconductivity of SnAs in a 

NaCl structure is due to this unusual chemical state. The 

structural, electronic, vibrational and superconducting 

properties  of  SnAs  in  the  NaCl  structure  using DFT have  

been investigated by Tütüncü and Srivastava [5]. They also 

calculated the Debye temperature of SnAs as 199 K. 

Kunjomana et al. [6] grew InTe crystals using a physical 

vapour deposition (PVD) method. Hase et al. [7] evaluated 

the electronic structure of PbSb using FLAPW and LDA. 

They found that PbSb is a soft metal. The electronic 

properties of SnAs, InTe, and PbSb in NaCl structure were 

studied by Hase et al. [8] using a tight binding analysis. 

PbSb, SnAs and InTe formally have typical valence states, 

In2+, Sn3+ and Pb3+. Pb atoms in a compound usually take a 

2+ or 4+ valence state, but rarely a 3+ valence. If we put a 

Pb atom into a site where it should take 3+, this valence state 

is unstable and may have large charge fluctuations. This type 

of “valence-skip” charge fluctuation can induce a charge-

density wave (CDW) or superconductivity [9]. Shrivastava 

et al. [10] studied structural phase transition, elastic and 

electronic properties of B1-structured SnAs using DFT. The 

structural, electronic, optical and elastic properties of tin 

arsenide in an ambient state were reported using first 

principles DFT by Rahman et al. [11].  Reddy et al. [12] did 

a computational study of the phonon structure, electron-

phonon interaction and a transition temperature at 3.08 K 

across the phase diagram. 
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 To our knowledge, only few studies have been reported 

in the literature on the elastic and mechanical properties of 

these materials [10-11]. No reports have been found of 

thermal and ultrasonic studies of the rock-salt structure 

superconductors, SnAs, InTe and PbSb, in the literature. This 

motivated us to conduct a study of the ultrasonic and thermal 

properties of SnAs, InTe and PbSb. In the present work, we 

computed the temperature dependence of the second and 

third order elastic constants (SOECs and TOECs), bulk 

modulus (B), shear modulus (), tetragonal modulus (CS), 

Young’s modulus (Y), Poisson ratio (), Pugh’s indicator 

(/B), Zener anisotropy ratio (ZA), ultrasonic velocities, 

Debye temperature, thermal conductivity, acoustic coupling 

constants and ultrasonic attenuation of these materials. The 

results are compared with available data for the chosen 

material, as well as other rock-salt type materials. 

 

2. Theoretical approach 

 

 In ultrasonic attenuation computations, the SOECs and 

TOECs play a crucial role. The SOECs and TOECs were 

computed by means of Brugger’s definition of elastic 

constants at an absolute zero temperature (0 K) [13]: 

 

KTmnklij

n

ijklmn

F
C

0
.............






















                         (1) 

 
where F is the free energy of an undeformed material and is 

given as: 

 
VibFUF                  (2) 

 

Here, U is the internal energy of a unit volume of the crystal, 

when all ions are at rest at their lattice point. U is given as:  
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where Vc is the volume of an elementary cell, a3. Here, a is 

the lattice parameter of a particular superconductor, 𝑅𝜒
𝑚0is 

the distance between the th ion in the 0th cell and the th ion 

in the mth cell. 𝜙 is the interaction potential between the ions. 

 

 Fvib is the vibrational free energy at higher temperatures 

and is given as: 
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and ij, kl and mn are components of the Lagrangian strain 

tensor (here i, j, k=1, 2, 3). ij is given as: 
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where x and y are the initial and final positions of a material 

point and ij is Kronecker’s delta. 

 In Eq. (3), we can omit the indices (,0) and (, m) for 

simplicity.  Then,  this  potential, 
 
𝜙 (r),  is  the  sum  of  the  

Coulomb and Born -Mayer potentials. 

 

ϕ(r)= ϕ(C) + ϕ(B)                                 (6) 

 

where ϕ(B) is the Born-Mayer potential and  ϕ(C) is the 

Coulomb potential.  

 

Their values are given as: 
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where e is the electronic charge, r0 is the nearest neighbour 

distance or short range parameter, b is the hardness 

parameter or Born’s repulsive parameter and A is the strength 

parameter. The expression to compute A is given as: 
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where 𝑆3
(1)

is the lattice sum and its value is -0.58252 [13]     

and 𝜌0 =
𝑟0

𝑏
. 

 

 The SOECs and TOECs at higher temperatures have 

been evaluated using methods developed by Mori & Hiki 

[14], Leibfried & Haln [15], Leibfried & Ludwig [16] and        

Ghate [17] for NaCl-type crystals such as the chosen 

superconductors, SnAs, InTe and PbSb. The lattice 

parameters were found for these materials are 5.81 Å for 

SnAs [10], 6.18 Å for InTe [2] and 6.535Å for PbSb [7]. 

These lattice parameters are taken at zero Kelvin (0 K) 

temperature by means of first principle studies [2, 10, 7]. It 

is also presumed that the values of the lattice parameter for 

the chosen materials are constants in the specific temperature 

regimes. Hence, SOECs and TOECs at a particular 

temperature have been achieved by the addition of a 

vibrational energy contribution and static elastic constants. 
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0 (zero) and Vib represent the values of the elastic constants 

at 0 K and at a particular temperature respectively. [18].  

 

 The detailed expressions [18] for SOECs and TOECs are 

given as: 
 

Static SOECs and TOECs 
 

 
 

(10) 
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The values of lattice sum [14, 17] are: 
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Vibrational SOECs and TOECs  

 

 
 

where: 
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Here, 𝑥 = ℎ𝜔𝑜/2𝑘𝐵𝑇, where h is Planck’s constant and 𝑘𝐵 

is the Boltzmann’s constant.
 

 

𝜔0 is the lattice vibrational frequency, given as: 
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M+ and M- are masses of positive and negative ions (Sn+3, 

In+2, Pb+2, As-3, Te-2 and Sb-2 in present investigation). 

 

Expressions of 𝐺𝑛are given by the following relations: 

 

 
 

where H is given by the following expression:  

 

    
 

and 𝜌0 =
𝑟0

𝑏
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 The hardness parameter plays an important role in the computation the SOECs and TOECs. It is also known as the Born 

repulsive parameter as given in Eqs. (7-15) [14, 19-20]. It can be determined as follows: 

 The total free energy of a crystal in equilibrium should be minimal. In a cubic crystal for equilibrium conditions, this is: 
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 A set of b which satisfied this relation and also minimizes ∑(𝐶𝐼𝐽
𝐶𝑎𝑙. − 𝐶𝐼𝐽

𝐸𝑥𝑝.
)

2
is chosen as the most probable solution. 𝐶𝐼𝐽

𝐶𝑎𝑙. 

are the calculated values of the SOECs in present work and 𝐶𝐼𝐽
𝐸𝑥𝑝.

 are the experimental SOECs at room temperature. The 𝐶𝐼𝐽
𝐸𝑥𝑝.

 

values have not been published in the literature. Therefore we have chosen the most probable value of b satisfying the above 

relation near about the chosen values in other families compounds from published data [14, 21]. Ghate [17] used two values 

of the Born parameter for NaCl-type crystals. It is further presumed that the value of b is independent of temperature and can 

empirically be expressed as b=0.313 Å. The values are approximately equal for SnAs, InTe and PbSb. 

(11) 

(14) 

(15) 
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 SOECs have been utilized to determine the values of 

mechanical constants such as the bulk modulus (B), shear or 

rigidity modulus (), tetragonal modulus (CS), Young’s 

modulus (Y), Poisson’s ratio (), Pugh’s indicator (/B) and 

Zener anisotropy factor (ZA) for SnAs, InTe and PbSb. The 

values of abovementioned parameters can be determined 

[22] from following equations: 
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 The stability, strength and hardness of the materials were 

obtained from these parameters. In particular, in the case of 

cubic crystals [23-25], the conditions of stability reduce to a 

very simple form: 

 

𝐵 =
𝐶11 + 2𝐶12

3
 > 0, 𝐶𝑠 =

𝐶11 − 𝐶12

2
> 0, C44 > 0, 

                                                                                          

(18) 

 

The above equations for the cubic crystal system are well 

known, often referred to as the “Born stability criteria”.  

 Ultrasonic velocity plays a vital role in the 

characterization of materials. The propagation of ultrasonic 

waves through anisotropic solids depends on the strains 

along the <100>, <110>, <111> directions. When ultrasonic 

waves propagate through a medium, their velocity has three 

modes of propagation, one longitudinal acoustical (VL) and 

two shear acoustical (VS1, VS2). The expressions for VL, VS1 

and VS2 are presented elsewhere [24]. 
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Along the <110> crystallographic direction: 
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Along the <111> crystallographic direction: 
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where d is the density of the chosen materials. 

 The Debye average velocity VD can be determined using 

Debye theory [26]. VD is the average of VL, VS1 and VS2.  VD 

is expressed as:   
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 The Debye temperature (D) is obtained by substituting 

VD [26] into Eq. (24). 
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where n is the number of atoms in the molecule, N is 

Avogadro’s number and M is molecular weight.   

 The thermal relaxation time is the period required to 

convey the acoustic energy into a thermal phonon and the 

time to balance the temperature variation of the phonons. The 

expressions for the thermal relaxation time ( ) to propagate 

along the longitudinal and shear modes are:   
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where,   is thermal conductivity and CV is the specific heat 

per unit volume. The expression for the thermal conductivity 

is given by Cahill’s approach [27]: 
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There are three main causes of ultrasonic attenuation: 

(i) Electron-phonon interaction 

(ii) Phonon-phonon interaction 

(iii) Thermo-elastic relaxation mechanism 

 

 At high temperatures, ultrasonic attenuation due to 

phonon-phonon interaction and a thermo-elastic relaxation 

mechanism occurs, while ultrasonic attenuation due to 

electron-phonon interaction has been found absent in higher 

temperature regimes [28-29]. 

 The expression to compute the ultrasonic attenuation due 

to thermo-elastic relaxation [26, 20] is given as: 
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where α is the ultrasonic absorption coefficient, th is the 

thermo-elastic loss,  is the frequency of the ultrasonic wave, 

𝛾𝑖
𝑗
 is the Grüneisen parameter.  

      Ultrasonic attenuation due to the phonon-viscosity 

mechanism (Akhiezer loss) [26, 30] is expressed as:  
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Table 1 SOECs and TOECs of SnAs, InTe and PbSb at the temperature range 0 to 300 K [in 1010 Nm-2] 

 

Material Temp. (K) C11 C12 C44 C111 C112 C123 C144 C166 C456 

SnAs 0 4.75 1.31 1.31 -80.32 -5.29 2.20 2.20 -5.29 2.20 

  100 4.66 1.26 1.32 -75.25 -5.13 1.88 2.21 -5.41 2.20 

 200 4.86 1.22 1.33 -76.8 -4.95 1.71 2.22 -5.44 2.20 

 300 5.07 1.19 1.33 -78.5 -4.77 1.56 2.23 -5.47 2.20  

SnTe [10] 300 14.98 2.03 4.02       

SnTe [11] 300 13.80 1.60 3.30       

InTe 0 2.33 0.37 0.36 -46.10 -1.42 0.68 0.68 -1.42 6.76 

 100 2.48 0.33 0.36 -47.55 -1.17 0.20 0.67 -1.42 6.76 

 200 2.63 0.30 0.37 -49.20 -0.97 0.20 0.68 -1.43 6.76 

 300 2.79 0.27 0.37 -50.88 -0.77 0.03 0.68 -1.44 6.76 

PbSb 0 3.49 0.79 0.79 -62.10 -3.16 1.37 1.37 -3.16 1.37 

 100 3.67 0.73 0.79 -63.55 -2.91 1.07 1.38 -3.17 1.37 

 200 3.86 0.72 0.79 -6.522 -2.72 0.91 1.38 -3.19 1.37 

 300 4.05 0.67 0.79 -66.94 -2.53 0.75 1.39 -3.21 1.37 

 

Table 2 B, , Cs, Y (all in 1010Nm-2), , /B ratio and ZA of SnAs, InTe, PbSb at room temperature 

 

Material B  CS Y  /B ZA 

SnAs 2.49 1.55 1.94 3.86 0.24 0.63 0.69 

SnAs [10] 6.42 4.87 - 11.6 0.20 0.76 - 

SnAs [11] 5.67 4.23 - 10.16 0.21 0.75 0.54 

InTe 1.11 0.62 1.26 1.57 0.26 0.56 0.29 

PbSb 1.80 1.08 1.69 2.71 0.24 0.60 0.47 
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where E0 is thermal energy. 

 

The acoustic coupling constant [26], which is a measure of 

thermal energy conversion into acoustic energy under a 

relaxation process, is expressed as: 
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The total attenuation in any solid medium due to ultrasonic 

wave propagation can be written as the sum of attenuation 

due to the thermo-relaxation phenomenon and phonon-

phonon interactions.  
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3. Results and discussion 

 
 The temperature dependent higher order elastic constants 

(SOECs and TOECs) were found using the nearest neighbour 

distance and hardness parameters. The values of the higher 

order elastic constants (C11, C44, C12, C111, C112, C123, C144, 

C166 and C456) are given in Table 1. From Table 1, it can be 

seen that the C11, C44, C111, C144 and C166 values increase with 

temperature, while C12, C112 and C123 decrease with 

increasing temperature. The value of C456 remains invariant 

due to the absence of a vibrational component. The change 

in the higher order elastic constant is due to variation in the 

inter-atomic distance with temperature. This type of trend of 

the higher order elastic constants was observed first in other 

NaCl-type materials (alkali halides) by Mori and Hiki [14].  

Recently, we observed this tendency in higher order elastic 

constants in NaCl-type actinide carbides [29] and lutetium 

monopnictides [30]. Our results for second order elastic 

constants were compared with those of Shrivastava et al. [10] 

and Rahman et al. [11] for SnAs. We used the Born model 

potential up to the second nearest neighbour, while 

Shrivastava et al. [10] and Rahman et al. [11] used first 

principles methods up to various neighbors. Although first 

principles is a better approach, our method is very simple and 

provides an overview of the whole analysis. This type of 

comparative study for the higher order elastic constants has 

been used in case of lutetium monopnictides [30] and 

praseodymium monopnictides [31]. Calculations were done 

manually as well as in MATLAB. So, we favour our results 

of SOECs and TOECs in this temperature regime. 

 According to Ghate [17], in the central force model 

chosen for alkali halides, the Cauchy relations for the SOECs 

and TOECs, 𝐶12
0 = 𝐶44

0 ; 𝐶112
0 = 𝐶166

0  𝑎𝑛𝑑 𝐶123
0 = 𝐶144

0 =
𝐶456

0 , are satisfied at 0 K. The failure of the Cauchy relations 

at a finite temperature T is due to the vibrational component 

of energy. This trend has previously been observed in alkali 

halide crystals [13-14, 29-30]. 

 The calculated SOECs and TOECs were used to evaluate 

mechanical parameters such as bulk modulus (B), shear 

modulus (), tetragonal modulus (CS), Young’s modulus (Y), 

Poisson ratio (), Pugh’s indicator (/B) and Zener 

anisotropy ratio (ZA) using Eq. (17). The computed values of 

these mechanical parameters are given in Table 2. 

 We compared our results with first principles 

calculations [10-11]. Our results have lower magnitude 

compared to other published values [10-11]. This is due the 

lower values of the SOECs for the chosen materials. The 

anisotropic ratio (ZA) is the elastic anisotropy of a solid. The 

value of ZA was found to be less than one for SnAs, InTe and 

PbSb.  So, we can conclude that these materials exhibit 

anisotropic   behavior.  From  Table  2,  Pugh’s  indicator  is   
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Table 3 Orientation dependent VL, VS1, VS2 and VD (in 103 ms-1), D (in K),  (in Wm-1K-1) and th (in ps) of SnAs, InTe and 

PbSb at room temperature 

 

Material Orientation VL VS1 VS2 VD D   th  

SnAs <100> 2.77 1.42 1.42 1.59 207 2.20 3.12 

 <110> 2.60 1.42 2.42 1.85 240 1.24 2.32 

 <111> 2.54 1.62 1.62 1.78 251 1.29 2.50 

InTe <100> 2.02 0.73 0.73 0.83 102 0.46 3.09 

 <110> 1.67 0.73 1.92 1.01 124 0.32 2.81 

 <111> 1.53 1.18 1.18 1.27 155 0.51 1.48 

PbSb <100> 2.27 1.00 1.00 1.13 131 1.09 0.71 

 <110> 2.00 1.00 2.07 1.35 156 0.68 0.20 

 <111> 1.91 1.33 1.33 1.44 166 0.84 0.65 

 

Table 4 Orientation dependent DL, DS1, DS2, (/2)L, (/2)S1, (/2)S2, (/2)th and (/2
)Total (all (/2

) in 10-16 Nps2m-1) of 

SnAs, InTe and PbSb at room temperature 

 

Materials Direction DL DS1 DS2 (/2)L (/2)S1 (/2)S2 

 

(/2)th 

 

(/2)Total 

 

SnAs <100> 15.06 1.04 1.04 8.33 2.11 2.11 0.02 12.57 

 <110> 17.78 0.89 26.03 8.83 1.35 7.99 0.08 18.25 

 <111> 16.05 19.19 19.19 1.19 11.06 11.06 0.08 23.39 

InTe <100> 23.44 1.16 1.16 0.29 0.15 0.15 0.0002 0.59 

 <110> 30.15 0.71 38.98 0.66 0.09 0.28 0.001 1.03 

 <111> 23.25 31.14 31.14 0.32 0.46 0.46 0.003 1.24 

PbSb <100> 17.97 1.08 1.08 0.28 0.09 0.09 0.0002 0.46 

 <110> 21.33 0.77 32.13 0.13 0.02 0.09 0.0007 0.24 

 <111> 18.99 22.94 22.94 0.42 0.81 0.81 0.001 2.04 

LiF  <100> 38.00 4.50 4.50      

[36] <110> 17.00 4.50 35.00      

 <111> 11.00        

KCl [37] <111> 13.38 36.46 36.46 10.23 249.0 249.0   

KBr [37] <111> 16.10 30.31 30.31 25.20 380.0 380.0   

KI [37] <111> 26.15 43.42 43.42 69.20 843.0 843.0   

 

greater than 0.57, which indicates the brittle nature of SnAs, 

InTe and PbSb. From Eq. (18) and Table 2, it can be seen 

that the chosen materials follow the Born stability criterion. 

Hence, the materials are mechanically stable. The Poisson’s 

ratio furnishes information about the nature of bonding in a 

material. The values of Poisson’s ratio () are between 0.25 

and 0.5 in the central force solid. In our case, the evaluated 

value is ≥ 0.25, so interatomic forces are central in SnAs, 

InTe and PbSb. The values of Poisson’s ratio are used to 

define a material’s nature: (i) if =0, the material is ionic, (ii) 

if =0.25, the material is covalent, and (iii) if =0.33, the 

material is metallic. In our case the value of  for the SnAs, 

InTe and PbSb is approximately 0.25, which verifies their 

covalent character at zero pressure [29]. Table 2 shows that 

the values of B, , Cs, Y, , /B  and ZA for SnAs, InTe and 

PbSb are lower than those of previous investigators [10-11, 

23] due to our smaller second order elastic constants.  

 We calculated the longitudinal and shear ultrasonic 

velocities modes (VL, VS1 and VS2) for SnAs, InTe and PbSb 

along the <100>, <110>, <111> crystallographic directions 

using the SOECs and TOECs. The Debye average velocity 

(VD) is calculated using Eqs. (22-23) by means of VL and VS 

along various directions. VD was used to compute the Debye 

temperature (D) employing Eq. (24). The thermal 

conductivity () was computed using ultrasonic velocities 

with the help of Cahill’s approach [27] using Eq. (20). The 

thermal relaxation time (th) was computed using Eq. (25). 

The orientation dependence VL, VS1, VS2, VD,  D,  and th of 

SnAs, InTe and PbSb at room temperature are given in 

Table 3. 

 From Table 3, it can be seen that VD is the highest for all 

the selected substances along the <110> direction. D is 

lowest along the <100> direction and highest along the 

<111> direction. The thermal conductivity is highest for 

SnAs along the <100> direction. On the basis of the order of 

thermal relaxation times, SnAs and InTe show metallic 

behaviour, while PbSb demonstrates semiconducting 

behaviour [32]. The thermal conductivity is highest for SnAs 

along the <100> direction. It is comparable with other NaCl-

type materials incorporating BaPo, CaPo, or PbPo [33]. The 

highest Debye temperature, for SnAs, means that its thermal 

conductivity is quite different than InTe and PbSb.  
 Thermal conductivity is computed using Cahill’s 

approach [27]. In this method, the thermal conductivity is 

directly related to VL, VS1 and VS2 [see Eq. (26)]. These values 

are different for all the chosen materials. So, the thermal 

conductivity of SnAs differs from those of InTe and PbSb. 

Equation (29) is used to compute the acoustic coupling 

constants (DL, DS1 and DS2). The ultrasonic attenuation due 

to the phonon-viscosity mechanism ((/2)L, (/2)S1, 

(/2)S2) has been worked out from Eqs. (27-28). Thermal 

elastic loss ((/2)th) is determined using Eq. (27). The 

obtained results for DL, DS1, DS2, (/2)L, (/2)S1, (/2)S2, 

(/2)th and total attenuation (/2
)Total along the <100>, 

<110>, <111> orientations are reported at room temperature 

in Table 4. 

 Table 4 depicts that the acoustic coupling constant for the 

longitudinal mode, i.e., DL is highest along <110> 

orientation and lowest along the <100> orientation. For the 

shear mode, i.e., DS is highest along <111> direction for all 

the materials. We also compared our results for the acoustic 
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coupling constant with NaCl-type materials, LiF [34] KCl, 

KBr & KI [35]. We found our acoustic coupling constants 

satisfactory.  Acoustic coupling constants values are not 

available in the literature, so we compared our results with 

the same structural material [34]. The obtained results 

presented in the current investigation are more or less in 

agreement with the experimental results for LiF [34] and 

KCl, KBr & KI [35]. 

 Table 4 shows that PbSb has lowest attenuation along the 

<110> direction. So, it is predictable that PbSb is most 

suitable candidate for the future applications, especially 

along <110> crystallographic direction. The total ultrasonic 

attenuation is found highest for SnAs along the <111> 

orientation, while lowest for PbSb along the <110> 

orientation, as shown in Table 4. It can also be seen from 

Table 4 that the ultrasonic attenuation due to phonon-phonon 

interaction (Akhieser loss) is principal over the thermo-

elastic loss.  We also compared our results with other rock-

salt structure materials, KCl, KBr and KI [35]. It can be 

observed from Table 4 that the values of ultrasonic 

absorption over frequency squared (/2) for chosen 

materials are very much less than KCl, KBr and KI [35]. The 

behavior of the chosen materials is quite different from KCl, 

KBr and KI. It is well established that the chosen materials 

are superconductors, while KCl, KBr and KI are dielectric 

materials. Superconducting materials, such as SnAs, InTe 

and PbSb, have less ultrasonic attenuation than dielectrics 

[35]. 

 

4. Conclusions 

 

 In this investigation, the Born model potential was 

successfully used to compute the higher order elastic 

constants of SnAs, InTe and PbSb. We also calculated the 

mechanical constants, such as the bulk modulus, shear 

modulus, tetragonal modulus, Young’s modulus, Poisson’s 

ratio, Pugh’s indicator and Zener’s anisotropy factor of these 

materials for their mechanical and intrinsic behaviour. The 

investigation verifies that the materials are mechanically 

stable and possess anisotropy in elasticity and are brittle in 

nature.  The mechanical properties of SnAs are greater in 

magnitude than InTe and PbSb. The ultrasonic velocities 

reveal that SnAs has a better crystallographic texture. The 

thermal properties, such as the Debye temperature, thermal 

conductivity and thermal relaxation time, also reveal that 

these materials have better performance at room temperature 

due to their more or less metallic character. The greater 

magnitude of the Debye temperature for SnAs implies that 

its thermal conductivity is quite large compared to InTe and 

PbSb. PbSb has lowest attenuation, which implies that this 

material is more useful in a number of industrial applications, 

including infrared detection and imaging, than SnAs and 

InTe. Overall, we observed that these superconducting 

materials have ultrasonic features analogous to metallic and 

semiconducting materials. Ultrasonic attenuation due to 

phonon-phonon interaction (Akhieser loss) is the major 

portion of total attenuation. 

 The results of this investigation on superconducting 

materials, SnAs, InTe and PbSb, are valuable for the future 

applications of these materials as well as for further research.  
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6. List of symbols  
 

Cijklmn = Higher order elastic constants 

F = free energy of an undeformed material 

U = internal energy of a unit volume of the crystal 

Vc = the volume of an elementary cell 

A = lattice parameter 

𝑟𝜇𝑣
𝑚0 = the distance between the th ion in the 0th cell and    

th ion in the mth cell  

𝜙𝜇𝑣 = the interaction potential between ions 

Fvib  = vibrational free energy at higher temperatures 

ij, kl and mn  = components of Lagrangian strain tensors 

x and y = initial and final positions of a point in a material  

ij  = Kronecker’s delta. 

𝜙(𝐵) = Born- Mayer potential   

ϕ(𝐶)  = Coulomb potential  

e  = electronic charge, 

r0  = nearest  neighbour   distance   or   short   range               

                parameter, 

b  = hardness parameter or Born’s repulsive parameter 

A  = strength parameter 

𝑆3
(1)

 = lattice sum 

ℎ̅ =
ℎ

2𝜋
 = reduced Planck’s constant

 

h  = Planck’s constant, 

G1  = a term is used in the computation of the SOECs and 

TOECs 

B = bulk modulus  

 = shear or rigidity modulus  

CS  = tetragonal modulus   

Y  = Young’s modulus  

 = Poisson’s ratio  

µ/B  = Pugh’s indicator  

ZA  = Zener anisotropy factor  

VL  = longitudinal velocity 

VS1 = shear velocity 

VS2  = shear velocity 

VD = Debye average velocity  

D = Debye temperature  

kB = Boltzmann constant 

n  = number of atoms in the molecule 

N  = Avogadro’s number 

ρ  = density 

M  = molecular weight 

𝜏𝑡ℎ = thermal relaxation time 

𝜏𝑙𝑜𝑛𝑔 = relaxation time for longitudinal mode propagation     

                of wave 

𝜏𝑠ℎ = relaxation  time  for  shear  mode of propagation of  

                wave

 
  = thermal conductivity  

CV  = specific heat per unit volume 

α  = ultrasonic absorption coefficient 

  = frequency of an ultrasonic wave 

𝛾𝑖
𝑗
 = Grüneisen parameter 

D = acoustic coupling constant 

E0 = thermal energy 
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