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Abstract  

 

Purpose: Support vector regression (SVR) has long been known as a great tool in forecasting. SVR combined with evolutionary 

algorithms have been used in many remarkable applications. Bayesian optimization (BO) has the ability to find good points in 

a search space without many function evaluations. This paper presents short-term load forecasting (STLF) in Thailand using 

SVR with Bayesian optimization (BO). The purpose of this paper is to improve forecasting accuracy by optimizing the 

hyperparameters of SVR.  

 Design/methodology/approach: The Electricity Generating Authority of Thailand (EGAT) provides 30 minute load data 

for Bangkok and the metropolitan region. The data from August 2015 to July 2017 is used for training and testing. Mean 

absolute percentage error (MAPE) and tracking signal (TS) are used to measure the performance of the proposed model. The 

hyperparameters of SVR are optimized using three algorithms, the genetic algorithm (GA), particle swarm optimization (PSO), 

and Bayesian optimization (BO). Findings: By comparing the MAPE results, the SVR-BO outperforms the other two 

algorithms. 

 

Keywords: Short-term electricity load forecasting, Bayesian optimization, Support vector regression, Data preprocessing 

 

 

1. Introduction 

 

 Short-term load forecasting (STLF) is an essential part of 

managing operations such as short-term maintenance, unit 

commitment, and power flow dispatch optimization [1]. 

STLF focuses on a time period of one minute to a week. It is 

used for daily load planning, load flow management and 

capacity scheduling for electricity generation. STLF uses 

daily and weekly cycles. There are many factors affecting 

load demand such as seasonality, the day of the week, the 

month of year and temperature. Complex and non-linear 

effects are difficult to forecast using traditional techniques. 

Moreover, the load pattern diverges from normal on 

holidays, the days close to holidays and weekends.  

 The foundation of a support vector machine (SVM) was 

developed by Vapnik (1995). SVM was developed to solve 

classification problems. Then, it was extended to the domain 

of regression problems and named Support Vector 

Regression (SVR) [2-4]. SVR can model non-linear relations 

and give great performance in forecasting [5]. It can 

effectively generalize and is robust in higher dimensions, 

which means there is no over-fitting. The objective of SVR 

is to prevent settling on a local optimum and reach the global 

optimum. It is characterized by hyperparameters that control 

the behavior of the function. These hyperparameters highly 

affect forecasting accuracy. Therefore, optimizing the 

hyperparameters in SVR is a major issue in training the 

model. Many researchers have suggested setting the 

hyperparameters of SVR using optimizing algorithms [6]. 

 Bayesian optimization (BO) was first studied by Kusher 

in 1964 and then Mockus in 1978. Methodologically, it 

touches on several important machine learning areas: active 

learning, contextual bandits, and Bayesian nonparametric 

approaches. BO has received serious attention in machine 

learning since 2007. It is an excellent tool for finding good 

machine learning hyperparameters.  

 

2. Literature review 
 
 There are various forecasting techniques that have been 

applied to STLF because of its significant economic and 

environmental implications [7]. It can be classified into two 

methods, traditional and artificial intelligence-based 

methods. The most well-known traditional techniques are 

exponential smoothing [8], regression [9], autoregression 

(AR) [10], autoregressive moving average (ARMA) [11-12], 

and autoregressive integrated moving average (ARIMA) 

[13]. The artificial intelligence based methods are fuzzy 

systems [14-16], neural networks (NN) [17] and support 

vector regression (SVR) [18-21]. A computational 

intelligence-based model is effective in solving non-linear 

and complex equations [22]. 
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 By introducing the structural risk minimizing principle, 

SVR gets better generalization capability. Due to its ability 

to solve non-linear problems, SVR became an efficient 

model among machine learning algorithms [23]. SVR has 

good MAPE and RMSE performance among machine 

learning algorithms [24]. In [25], the strength of SVR is seen 

by comparing traditional methods (AR) with larger training 

data sets. The SVR parameters significantly affect the 

accuracy of the model, as has been shown by many 

researchers. Therefore, choosing the best parameters is an 

important issue in SVR modelling. There are many 

algorithms that can be used to select the best SVR 

parameters. The most widely used algorithms are the genetic 

algorithm (GA) [26-27], chaotic genetic algorithms [28-29], 

particle swarm optimization (PSO) [6, 30], simulated 

annealing (SA) [31], ant colony optimization (ACO) [32],  

and Bayesian optimization (BO) [33].  

 Hybridizing Bayesian optimization with support vector 

regression (SVR) to enhance the forecasting accuracy is an 

active area in forecasting. This hybrid algorithm combines 

the advantages of SVR and Bayesian inference [34]. SVR is 

highly suitable for load forecasting as it can map non-linear 

relationships. BO has received attention in recent years 

because it is compatible with machine learning algorithms 

such as deep learning, neural networks and support vector 

machines [35]. It deals with the problem of local minima and 

computational complexity in training [33].  

 This paper progresses as follows. An overview of SVR 

and BO are given in Section 2. Section 3 covers the 

combination of SVR-BO and Section 4 gives a discussion of 

the data. The results of forecasting performance are 

discussed in Section 5. Then, the conclusions and suggested 

future research are presented in the last session. 

 

3. Methodology 

 

3.1  Support vector regression 

 
 The approach of support vector regression (SVR) is 

based on linear regression in a feature space [3]. Figure 1 

demonstrates the process of SVR considering its error value. 

According to the figure, the regression relies on support 

vectors and the errors are ignored that are smaller than ε. 

 

 
 

Figure 1 Simple example of SVR 

 

 𝐿 = {(𝑎𝑖 , 𝑏𝑖)}𝑖=1
𝐷 , where ai is the input data and bi is the 

target, the problem can be defined by the following equation:  

 

𝑓(𝑥) = 𝑔∅(𝑥) + 𝑒                              (1) 

 

where, g represents the coefficients of regression and e is a 

bias term. It can be solved by the following structural risk 

minimization (SRM) function [2]: 

 

𝑆𝑅𝑀 =
1

2
‖𝑔‖2 + 𝐶(∑ 𝜉 + 𝜉∗)𝑙

𝑖=1              (2) 

 

Subjected to the constraints: 

 

𝑏𝑖 − 𝑔𝑎𝑖 − 𝑒 ≤ 𝜀 + 𝜉    

𝑔𝑎𝑖 + 𝑒 − 𝑏𝑖 ≤ 𝜀 + 𝜉∗       

𝜉 ≥ 0 , 𝜉∗ ≥ 0  

 

where, the width of the loss function is represented by 𝜀, and 

this parameter that can be tuned to handle model complexity. 

The training data set is denoted as C. ξi
* and ξi are slack 

variables which must have non-negative values to ensure 

suitable constraints.  

 Three types of kernel functions are used in SVR. They 

are a linear kernel function (LKF), radial based function 

(RBF), and polynomial function (PLF). Among them, RBF 

is most applied since it only depends on the parameter γ to 

tune using the dataset. The RBF kernel function is R(a, ai): 

   

𝑅(𝑎, 𝑎𝑖) = 𝑒𝑥𝑝𝛾‖𝑎 − 𝑎𝑖‖2                             (3) 

 
where, a and ai are the inputs for the specific dimensions and 

the diameter of the RBF represented by γ. SVR model 

performance significantly relies on hyperparameters (Ci, εi, 

γi). In this paper, Bayesian optimization (BO) is proposed to 

select the proper hyperparameters.  

 

3.2 Bayesian optimization 

 

 The goal of the Bayesian optimization (BO) is to 

minimize or maximize an objective function f(x) for x in a 

bounded area. BO uses stochastic and deterministic 

functions. The results can be changed to different values 

since it is calculated at the same point. BO internally carries 

out a Gaussian process model (GPM) and trains the model 

by applying objective function evaluations [36]. One useful 

feature of BO is the application of an acquisition function 

(AF). It is an algorithm to evaluate the next point. BO is well-

suited for optimizing parameters of other functions. It is 

developed for an objective function and is slow in evaluating 

values. BO does not need initial starting values to find a 

global solution unlike other algorithms [37]. It uses a GPM 

of f(x), updating the GPM at each new objective function. An 

acquisition function is formed in GPM to evaluate the next 

point x. 

 

3.2.1 Gaussian Process Model (GPM)  

 

 The GPM that is managed by Bayesian Optimization 

(BO) is widely used in machine learning. GPM is a prior 

distribution which is effective in its handling of functions. 

The covariance and mean functions are considered in a 

Gaussian process [38]. 

 The data set,  𝑎 = {𝑎1, … , 𝑎𝑛}  and the function 𝑓 =
{𝑓(𝑎1), … , 𝑓(𝑎𝑛)} are brought up by GPM. 

 

𝑓 ~ 𝐺𝑃𝑀(𝑃, 𝐿)                                                            (4)                                                                                                    
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Figure 2 Various load demands for five significant groups in January 2016 

 

where:  

 𝑝: 𝐴 → 𝑅  is the mean function that manages 𝑝(𝑥) =
𝐸[𝑓(𝑎)].  
 𝐾: 𝐴2 → 𝑅  is the covariance of function that is 

determined as: 

 

𝑅(𝑎, 𝑎𝑖) = [𝐸(𝑓(𝑎) − 𝑝(𝑎))(𝑓(𝑎𝑖) − 𝑝(𝑎𝑖) ]                   (5)        

                                                                  

3.2.2 Acquisition Function (AF) 

 

 In the recent years, the use of an acquisition function 

(AF) in BO was innovative [39]. It is used to determine the 

next best point. It can balance the sampling points that 

explore the areas that could not be trained effectively and get 

a minimum fitness function. Expected Improvement (EI), 

Lower Confidence Bound (LCB), and Probability of 

Improvement (PI) are widely applied in AF. In this paper, EI 

is applied to select the next best point. 

 

𝐸𝐼(𝑎) =  [𝐸𝑞 max (0, 𝜇𝑞(𝑎𝑏𝑒𝑠𝑡) − 𝑓(𝑎))]                              (6)                                                               

 

where:  

 𝑎𝑏𝑒𝑠𝑡 = the point for the minimum posterior mean 

 𝜇𝑞(𝑎𝑏𝑒𝑠𝑡) = the minimum value of the posterior mean 

 

4. Dataset 

 

 The data was provided by the Electricity Generating 

Authority of Thailand (EGAT). It is collected at half-hour 

intervals each day since it is easy to see the load pattern and 

avoids the problem of having too much data. It has 48 periods 

(or bins) per day. We use the peak load data from August 

2015 to July 2017.  

 

4.1 Data cleaning 

 

  Since there are different load patterns in daily electricity 

demand, the load demand needs to be filtered and cleaned 

[40]. In Figure 2, there are five significant load patterns: 

Mondays, weekdays, weekends, bridging holidays, and 

holidays. The days before and after the holidays are bridging 

holidays. Both holiday and bridging holiday loads are lower 

than on normal weekdays. Monday loads are the highest 

among the other days. Therefore, we filter the load data to 

find similar load patterns for each type of day. 

 There are four processes for data cleaning. Replacing the 

holidays by a weighted moving average is the first step. 

Then, the bridging holidays are also replaced with a weighted 

moving average. For the third step, a time-window filtering 

band Bt(d) is created to detect outliers. Last, the outliers are 

detected using a time-window filtering band and replaced by 

a k window moving average (k=4). 
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where:  

 Lt (d)  = Peak load at period t for day d, 

 Lt (d-7) = Previous week the same day peak load at                                                                                              

                             period t for day d,                            

 m = Week number,  

 Vt(d) = Time-window based filtering band of day   

                             d, 

 SD(Vt(d)) = Standard  deviation  of  all  periods in the                                                                            

                             time-window Vt(d), 

 k        = Period number, 

 N = Size of the filtering band, 

 t =  Period (bin) number (1, 2,….48) 

 

 The width of the window filtering band depends on the 

size of N. Based on experience, the optimal size of N is set 

as 1.6 to detect outliers in this research. After cleaning and 

filtering the load, there are no big changes in the dataset. The 

load demand has a similar pattern. Figure 3 presents the load 

patterns for five different groups after cleaning. 

 

4.2 Data segmentation for training and testing  

 

 First, the data is arranged into seven segments 

representing a different day of the week. If we forecast a 

Monday load, the training data set contains only Monday 

data. Therefore, there are seven separate dataset segments for 

training and testing. A walk-forward testing routine [41] is 

applied to training and testing sets. The model is trained with 

52 dataset and then tested with one dataset. Then, the data 

window slides forward one window at a time and the same 

process is performed for another 51 datasets. Figure 4 shows  
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Figure 3 Various load demands after replacing outliers of five different groups in January 2016 
 

 
 

Figure 4 Walk-forward testing routine 
 

Table 1 Sample arrangement of data training and testing for forecasting 2 August 2016 
 

 Training 

No. 𝑳𝒕(𝒅 − 𝟏) 𝑳𝒕(𝒅 − 𝟕) 𝑻𝒕(𝒅 − 𝟏) 𝑻𝒕(𝒅) MoY Target 𝑭𝒕 (𝒅) 

1 
09-08-15 3-08-15 09-08-15 10-08-15 

8 
10-08-15 

(Mon) (Tue) (Mon) (Tue) (Tue) 

 . . . . . . 

 . . . . . . 

 . . . . . . 

52 
25-07-16 19-07-16 25-07-16 26-07-16 

7 
26-07-16 

(Mon) (Tue) (Mon) (Tue) (Tue) 

 Testing 

No. 𝑳𝒕(𝒅 − 𝟏) 𝑳𝒕(𝒅 − 𝟕) 𝑻𝒕(𝒅 − 𝟏) 𝑻𝒕(𝒅) MoY  𝑭𝒕 (𝒅) 

1 
01-08-16 26-07-16 01-08-16 02-08-16 

8 
02-08-16 

(Mon) (Tue) (Mon) (Tue) (Tue) 

 

that the testing data window slides one dataset forward and 

the SVR is trained with a new training dataset using the same 

process. 

 

4.3 Data arrangement for training and testing  

 

 The training data are from August 2015 to July 2016 and 

the performance is evaluated on the data from August 2016 

to July 2017. There are five inputs into the model, 

yesterday’s load (Lt (d-1)), previous week-same day load 

(Lt (d-7)), yesterday’s temperature (Tt (d-1)), today’s 

temperature Tt (d) and month of the year (MOY) to forecast 

the load Ft (d). Table 1 shows the data arrangement of 

training and testing data to forecast the load on 2 August 

2017. 

 

4.4 Forecasting performance 

 

 The performance of the model is calculated from the 

mean absolute percentage error (MAPE) and tracking signal  

(TS). There is a total of 48 observations or 48 forecasted 

values for each day, d. MAPE (d) and TS (d) are calculated 

using the following equations:  
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Figure 5 SVR-BO flow chart 
 

Table 2 Upper bound and lower bound of Hyperparameters 
 

SVR  

(Hyperparameters) 

Interval  

(Upper Bound – Lower Bound) 

C 110-3 - 1000 

γ 110-2 - 300 

ε 110-1 - 1000 
 

Table 3 Hyperparameters of the three models 
 

 SVR-GA  SVR-PSO  SVR-BO 

 C γ ε  C γ ε  C γ ε 

Mon 10 1 0.3  156.787 125.52 1.654  10.431 15.369 13.066 

Tue 4.890 120.784 6.778  455.678 23.668 2.989  934.410 117.530 2.909 

Wed 67.472 699.765 0.0981  8.946 123.778 4.112  5.869 14.392 826.511 

Thurs 876.898 78.669 1.655  187.995 6.889 0.456  279.132 93.674 193.254 

Fri 98.767 0.884 120.898  845.923 0.033 14.766  0.046 0.612 475.752 

Sat 232.344 998.657 7.893  6.789 0.562 78.339  983.293 282.723 5.353 

Sun 0.098 125.773 9.347  723.766 1.200 129.551  63.638 20.428 84.273 

 

where:  

Ft (d)  = Forecast load at period t for day d,  

Lt (d)   = Actual load at period t for day d,  

t          = 1, 2, 3, …, 48 periods, 

     

4.5 SVR-BO Model 

 

 Many optimization algorithms are employed to 

determine the hyperparameters of SVR. Bayesian 

optimization is applied to tune the SVR hyperparameters in 

this study. The most important part before modelling the 

hybrid function is encoding. The hyperparameters that have 

to be optimized in SVR are C, ε, and γ. The upper bound and 

lower bound of the hyperparameters are shown in Table 2. 

The particle is encoded as Ai = (Ci, εi, γi ).  Figure 5 shows an 

outline of the SVR-BO algorithm. The model updates the 

Gaussian process and a new a value from the acquisition 

function is used to get the best hyperparameter. The model 

stops after 30 iterations or the objective value is under 13% 

of the cross-validation error rate. If the stopping conditions 

are not satisfied, the Gaussian process is updated using the 

acquisition function. Finally, the model is ready to forecast 

electricity demand. 

 

5. The forecasting results and discussion 

 

5.1 Hyperparameter settings  

 Since the data arrangement is divided into seven groups, 

one for each day, the suitable hyperparameter set also has 

seven different values groups. There are three optimization 

algorithms to be compared using the forecasting accuracy in 

this study. The first one is the genetic algorithm, which is a 

herustic method based on the process of natural selection. 

The fittest values are chosen for reproduction to produce the 

offspring of the next generation. The population size of the 

GA is 50 and the same number of chromosomes are used for 

the next generation from the parents of the previous 

generation. In the next generation, 50% result are from 

crossover, 45% from mutation and 5% become elite.  

 Secondly, particle swarm optimization is chosen to 

optimize the hyperparameters of SVR since it has had good 

performance in forecasting. The number of swarm size is 50 

and the weight of global and local factors, c1 and c2, is 2. We 

set the tolerance value to correlate with the testing data to 

force improvement. The most suitable tolerance value for 

this experiment is 1×10-4.  

 The last algorithm is the proposed model, Bayesian 

optimization. It tends to seek very good points in the search 

space with relatively few function evaluations. The 

hyperparameters of three models for each day are in Table 3. 

 

5.2 The forecasting performance of the proposed model 

(SVR-BO) 

 

 For the SVR-BO model, to clearly see the daily load 

forecasting  performance,  the forecast  results  of  each  day  
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Table 4 Yearly and monthly MAPE of each day for SVR-BO 
 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

August (2016) 4.23 5.02 2.66 1.64 2.14 3.33 4.90 

September (2016) 3.13 2.81 1.99 3.61 2.36 2.47 3.46 

October (2016) 3.70 4.09 2.84 2.38 1.31 2.06 4.68 

November (2016) 2.70 3.99 1.24 2.91 1.03 2.09 4.39 

December (2016) 9.80 4.39 5.89 4.78 2.50 4.20 5.23 

January (2017) 10.02 1.40 1.66 4.23 2.99 1.47 3.39 

February (2017) 1.52 5.40 4.12 7.03 3.17 8.26 4.52 

March (2017) 3.18 5.66 3.72 3.93 1.62 1.98 3.81 

April (2017) 7.51 5.12 6.49 0.95 2.45 3.25 7.11 

May (2017) 8.73 4.44 3.141 2.89 5.41 3.49 6.93 

June (2017) 2.69 4.99 3.84 4.65 2.00 2.86 4.76 

July (2017) 1.83 1.92 3.84 3.34 1.62 2.04 2.95 

Yearly Average 4.98 4.10 3.50 3.53 2.38 3.12 4.68 

 

 
 

Figure 6 The load difference between Monday and Sunday 
 

 
 

Figure 7 Forecasting error of Monday for SVR-BO 

 

from August 2016 to July 2017 are shown in Table 4. The 

MAPE of the Friday group is better than the other groups as 

its training input is Thursday, which has a similar load 

pattern. Therefore, the group of Wednesday, Thursday, and 

Saturday MAPE are related with similar values in the 

training method. Sunday, Monday and Tuesday groups give 

the highest MAPE. The MAPE of Monday group is 

especially high, 4.98. This group has a high MAPE because 

the Saturday load data includes the training input dataset for 

Sunday. Although Saturday and Sunday are weekend 

holidays, the load demand of Saturday is higher than Sunday 

as some businesses are open on Saturday. 

 The load demand of Monday is significantly lower than 

Tuesday, mostly in December, January, and February. It 

causes the Tuesday group to have the highest MAPE. 

Moreover, the group with the worst MAPE is Monday. It is 

clear that the load difference between Monday and Sunday 

is large, as is graphically shown in Figure 6. There are six 

data summaries, outliers, maximum, upper quartile, median, 

lower quartile, and minimum. The outliers are more than 3/2 

times the upper and lower quartiles. The load demand in the 

morning for Monday is lower than for Sunday. During the 

day and night times, except for some periods (20:00 to 

23:30), the load demand for Monday is much larger than the 

load demand of Sunday. Small variations occur between 5:00 

and 7:30. The largest variations affect the forecasting 

performance. Figure 7 gives details of the Monday 

forecasting  errors,  which  are  periods with the highest error. 
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Figure 8 Boxplot for monthly forecasting error variation from August 2016 to July 2017 for SVR-BO 

 

 
 

Figure 9 Monthly tracking signal from August 2016 to July 2017 for SVR-BO 

 

Comparing Figures 6 and 7, it can be seen that larger load 

differences result in higher forecasting errors. 

 The box plot in Figure 8 helps to investigate the 

distribution of errors for each month. There are big variations 

in December and April since there are many holidays. 

Although holiday and bridging holiday load data are cleaned, 

the electricity usage in December is still less than the other 

months. 

 Moreover, the tracking signal (TS) provides insight 

which months are subject to over-forecasting and 

under-forecasting. If the TS value is less than zero, 

over-forecasting is evidenced. Positive values of TS indicate 

under-forecasting. Almost all the months are under-forecast 

except December which has a tracking signal of -0.23, as can 

be seen in Figure 9. December is the hardest month to 

forecast since it has low electricity use. So, it is always over 

forecast. The TS value in March and November are the 

largest among the under-forecasted months. The forecast 

performance of March, November, and December needs 

improvement, as can be seen in Figure 9. 

 

5.3 Comparison of the forecasting performance of the 

proposed model with the other two algorithms 

 

 To clearly see the forecast performance of each month 

using the three optimization algorithms, the forecast results 

are shown in Table 5. The SVR-BO model gives better 

performance except for October (2016) and December 

(2016), where the MAPE of SVR-BO is larger than 

SVR-PSO. Since the influence of long holidays and low load 

demand, the MAPE has larger values in December, 

February, April and May.  

Table 5 Yearly and monthly average MAPE of the three 

optimizing algorithms 

 

 SVR-BO SVR-PSO SVR-GA 

August (2016) 3.21 3.50 4.15 

September (2016) 2.84 3.07 3.92 

October (2016) 2.96 2.83 4.18 

November (2016) 2.62 2.93 3.82 

December (2016) 4.38 4.74 3.90 

January (2017) 3.12 3.74 4.26 

February (2017) 4.35 4.39 4.06 

March (2017) 3.39 3.84 3.60 

April (2017) 4.51 4.57 4.35 

May (2017) 4.74 4.76 4.33 

June (2017) 3.66 4.03 3.67 

July (2017) 2.52 3.16 4.06 

Yearly Average 3.53 3.80 4.02 

 

 The yearly average MAPE is used to select the best 

optimization algorithm to train SVR for short-term load 

forecasting. According to the yearly average MAPE, 

SVR-BO has the smallest MAPE, 3.53. The other two 

optimizing algorithms, SVR-PSO and SVR-GA, have 

MAPE values of 3.8 and 4.02, respectively. SVR-BO 

improves forecast accuracy more than others. 

 Alternatively, the electricity load has several load 

patterns and there are other ways to investigate the forecast 

performance of the three optimization algorithms. Thailand 

has five different load patterns with five separate groups for 

representing the outcomes of forecasting in Figure 10.       

This figure summarizes the yearly average MAPE of            

the different   categories,  Mondays,  weekdays,  weekends,  
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Figure 10 Yearly average MAPE of different categories for three optimization algorithms 

 

holidays, and bridging holidays using three optimization 

algorithms. Comparing the three algorithms, SVR-BO gives 

the minimum yearly average MAPE in all categories. The 

maximum yearly average MAPE is seen with SVR-GA 

except for the weekdays group. Since the data is cleaned and 

filtered for holidays and bridging holidays, the performance 

of all algorithms of these two groups is good, especially for 

SVR-BO on the holiday group. The Monday group yields the 

largest MAPE for all algorithms according to the training 

method. Since the load on Sunday is significantly lower than 

Monday, it affects the performance of Monday regardless of 

the training method. 

 

6. Conclusions 

 

 This research proposes short-term load forecasting using 

support vector regression with Bayesian optimization. 

Historical data from 2015 to 2017, which are collected from 

the   Electricity Generating Authority of Thailand (EGAT), 

is used for this research.  

 We compare our proposed model (SVR-BO) with two 

optimization algorithms, SVR-GA, and SVR-PSO, by 

testing a one-year dataset (August 2016 – July 2017). The 

motivation of this research is to optimize the 

hyperparameters to get good forecasting performance. PSO 

and GA are easily trapped by local minima. The superiority 

of BO is that it moves beyond the local minima as the pattern 

is not stable at one objective value. We observe that the 

forecast of SVR-BO is more accurate than the other 

algorithms, especially on holidays and bridging holidays. 

SVR-BO is very effective in selecting suitable 

hyperparameters.   

 From our findings, the MAPE of December, April and 

May are still high even though we optimized the 

hyperparameters of SVR. The electricity demand in 

December is lower than the other months, so the demand is 

over-forecast and the forecasting error variation is higher. 

Therefore, the December results could be improved by 

training using only the December load. Moreover, the 

forecast results on Monday can be improved by using a 

different data cleaning method. Accordingly, future research 

may investigate the training inputs and modify the filtering 

techniques. 
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