
Chiang Mai J. Sci. 2015; 42(4) : 1031-1037
http://epg.science.cmu.ac.th/ejournal/
Contributed Paper

Comparing Tests for Association in Two-by-Two 
Tables with Zero Cell Counts
Nurin Dureh, Chamnein Choonpradub* and Phattrawan Tongkumchum
Department of  Mathematics and Computer Sciences, Faculty of  Science and Technology, Prince 
of  Songkla University Pattani Campus, Pattani 94000, Thailand.
*Author for correspondence; e-mail: chamnein.c@gmail.com

Received: 7 October 2013
Acepted: 24 January 2014

ABSTRACT
This study compared the tests for association in two by two tables with zero cell 

counts. Pearson’s uncorrected chi-squared test, Pearson’s chi-squared test with the continuity 
correction, Pearson’s uncorrected chi-squared Monte Carlo simulation test, Fisher’s exact test, the 
Conditional Binomial Exact Test (CBET), Barnard’s exact test, Liebermeister’s test, Lancaster’s 
mid P-test and logistic regression with penalized maximum likelihood were considered. Criteria 
used 72 two by two tables with smallest counts and average p-value for Fisher’s exact test and 
Pearson’s uncorrected chi-squared test close to 0.05. CBET, Lancaster’s mid-P test, and the 
penalized maximum likelihood test give similar p-values closest to 0.05, suggesting that these 
three methods can be recommended for testing association in two by two tables with zero cell 
counts.
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1. INTRODUCTION
Several methods have been recommended 

for analysis of  association in two-by-two 
tables. The most common test is Pearson’s 
chi-squared test, which is appropriate for 
sufficiently large sample sizes. It is inaccurate if  
any expected count is less than five [1, 2, 3]. In 
cases of  small sample sizes, Fisher’s exact test is 
recommended [1, 2, 3]. This method eliminates 
the nuisance parameter in the model under the 
null hypothesis by conditioning on its marginal 
totals [4] but is conservative. Another way to 
reduce the conservatism of  Fisher’s exact test 
is to consider an unconditional approach, such 
as Barnard’s test, which eliminates the nuisance 
parameter by taking its supreme value over all 

possible values in the space of  the null model 
[5, 6]. Several alternative tests also have been 
proposed [7]. These include Lancaster’s mid-P 
test [8], an adjustment to the Fisher’s exact 
test that tends to have increased power while 
maintaining a Type I error rate close to the 
nominal level [7, 9]. Liebermeister’s test also 
can be used in place of  Fisher’s exact test, 
and is less conservative than Fisher’s test and 
just as easy to calculate [3]. In addition, the 
“conditional binomial exact test” (CBET) is 
proposed as an alternative test for comparing 
binomial proportions estimated from samples 
of  larger populations [10]. 

Logistic regression provides a more 
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general method because it provides a model that 
accommodates more complex determinants. 
However, when one of  the four cells in the 
table is equal to zero, maximum likelihood 
estimates fail to converge [3, 5, 7, 10, 11, 12, 
13]. A solution to this problem was proposed 
by Firth [14], giving finite parameter estimates 
based on penalized maximum likelihood [14, 
15, 16, 17, 18]. This method is available in 
statistical software such as SAS, S-PLUS and 
R [17, 19]. However, these estimates are biased 
away from zero [16], so it is important to know 
how substantial these biases are.

Tables with a zero cell count thus lead to 
numerical problems [20], so it is important to 
identify the methods which provide the most 
accurate results for particular data structures. 
With this information, researchers can select 
the appropriate method for their studies. 
Thus the main objective of  this study was to 
compare the results when using recommended 
tests for association in two-by-two tables with 
small cell counts. 

2. MATERIALS AND METHODS
Tests for an association in two-by-two table

There are several methods for testing 
the association in two-by-two tables. If  the 
two-by-two table contains counts as in Table 
1, a brief  summary of  computing a p-value of  
these tests may be described as follows.
Table 1: The general counts of  a two-by-two 
table.

1 2 Total
1 a b m
2 c d n

Total z v m+n
	

Pearson’s uncorrected chi-squared test 
The functional form of  this test is 
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In general, the p-value is defined as the 
probability of  the test statistic T being equal to 
or more extreme than its value for the observed 
table (tobs), therefore, the approximate p-value 
for Pearson’s chi-squared test is [6]

p-value = )tP(χ obs
2   .

Pearson’s chi-squared test with the continuity  
correction (Pearson’s CC)

A continuity correction for the Pearson’s 
chi-squared test was proposed by Yates (1984). 
The corresponding formula for Pearson’s CC 
test is
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Pearson’s uncorrected chi-squared test 
with Monte Carlo Simulation

This test uses a reference set of  10,000 
samples to compute the p-value for Pearson’s 
uncorrected chi-squared test in (1).

Fisher’s Exact Test 
Fisher’s Exact P-value is obtained by 

conditioning on the total number of  observed 
successes [3]. If  r is the observed value in a 
cell, which can be greater or equal to a, the 
formula is 			    
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Alternative test statistics which can be used in 
place of  Fisher’s exact test with small counts 
are as follows.

Liebermeister’s test
This test is the quasi-exact test for 

two binomials. It is based on adjusting the 
observed table and can be obtained as the 
formula 

∑ 







+
++









−+
+








 +
=

+≥ 1 1
2

1
11

ar
L z      

nm
rz

n    
r      

m
P 	 (4)



Chiang Mai J. Sci. 2015; 42(4)	 1033

Lancaster’s mid-P test 
From (2), we may write Fisher’s Exact 

P-value as PF or PF (a). As Lancaster’s mid-P 
test is Fisher’s exact test adjusted, the formula 
for this p-value is [3].

[ ] 21)a(P)a(PP FFM ++= 	 (5)

Barnard’s exact test

Suppose t = {X : X is a 2 by 2 table as in Table 1}

Barnard’s exact test is an unconditional 
test. Suppose T(X) is a “discrepancy measure” 
or test statistic that measures how discrepant 
any table X is relative to the type of  table 
one would expect under the null hypothesis. 
It generates the exact distribution of  T(X) 
by considering all the tables X∈τ. If  p(π) is 
the exact p-value for any given π, Barnard 
suggested that we calculate p(π) for all possible 
values of  π∈(0,1) and choose the value π 
which maximizes p(π), thus, Barnard’s exact 
p-value is defined as [2].

 
PB = sup{p (π): π∈ (0,1)} 		  (6)

Conditional Binomial Exact Test (CBET)
This test is derived from the joint 

distribution of  two binomial samples and 
conditioned by the estimate of  the probability 
of  success p based on the combined samples 
[10].

Data Simulation
Data comprising 72 two-by-two tables 

were created based on the condition that one 
cell is always equal to zero and the rest are small 
counts that make the averaged p-value from 
Pearson’s chi-square test and Fisher’s exact 
test close to 0.05. We selected these 72 tables 
because they cover all such tables that fail to 
satisfy the sample size requirement in Pearson’s 
chi-squared test that all expected counts are 
at least 5. We selected these two methods 
because they are most commonly preferred 
when testing independence in categorical data. 
Pearson’s chi-square test is the conventioned 
method for testing independence and Fisher’s 
exact test is the prefered method when the 
sample sizes are too small. Therefore, using 
the averaged p-value from these two methods 
as a reference value is reasonable. 

Table 1. Cell counts in 72 two-by-two tables where one cell contains zero and the averaged 
p-value is close to 0.05.

Table 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 18 27 37 46 55 64 74 83 92 6 8 10 13 15 17 20 22 25

Table 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
a 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4
b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 4 5 6 8 9 10 11 12 13 3 4 5 6 8 8 10 11 12

Table 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
a 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6
b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 2 3 4 5 6 7 7 8 9 2 3 4 4 5 6 6 7 8

Table 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
a 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8
b 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 1 2 3 4 4 5 5 6 6 2 2 3 3 4 4 5 6 6
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The nine methods used for testing 
association in the two-by-two tables were 
Pearson’s uncorrected chi-squared test, 
Pearson’s chi-squared test with the continuity 
cor rection (Pearson’s CC), Pearson’s 
uncorrected chi-squared test with Monte Carlo 
Simulation, Fisher’s exact test, Liebermeister’s 
test, Lancaster’s mid-P test , Barnard’s 
exact test, Conditional Binomial Exact Test 
(CBET) and logistic regression with penalized 
maximum likelihood estimates. The reference 
p-value used was p=0.05 based on the average 
p-value of  Pearson’s uncorrected chi-squared 
test and Fisher’s exact test. 

3. RESULTS 
The p-values from the nine methods 

applied to tables 1-36 are shown in Figure 1 
and Figure 2 shows p-values from tables 37 
- 72. The solid line represents p-values equal 
to 0.05 and each connected line denotes the 
p-values for each test. 

The p-values from each test not entirely 
consistent but almost all are between 0.01 and 
0.2. A group including Pearson’s chi-squared 
test with the continuity correction, Pearson’s 
uncorrected chi-squared with the Monte 
Carlo simulation test, Fisher’s exact test and 
Barnard’s test give p-values higher than 0.05. 

 

Figure 1. P-values from the recommended tests using data in two-by-two tables with c= 0 and 
a is 1, 2, 3 and 4. 

 

Figure 2. P-values from the recommended tests using data in two-by-two tables with c= 0 and 
a is 5, 6, 7 and 8. 
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Pearson’s uncorrected chi-squared test and 
Liebermeister’s test tend to give p-values lower 
than 0.05 and tend to increase when the sample 
size is increased. CBET, Lancaster mid-P test 
and the penalized maximum likelihood method 
gave p-values close to 0.05. There were no 
outliers distant from 0.05 for any of  these 
three methods.

For comparison, Table 2 displays the 
average p-values of  the 72 tables from those 
nine tests. It is clear that Lancaster’s mid-P test, 
the Conditional Binomial Exact Test (CBET) 
and penalized maximum likelihood gave 
p-values closest to 0.05. Pearson’s uncorrected 
chi-squared test and Liebermeister’s test gave 
averaged p-values lower than 0.05. On the 
other hand, Fisher’s exact test, Pearson’s chi-
squared test with the continuity correction, 
Pearson’s uncorrected chi-squared test with 
Monte Carlo simulation and Barnard’s exact 
test gave large biases. All tended to have a 
large p-values. 

Example : Child Deaths from Perinatal 
Originating Conditions in Thai Provinces 

The data shown in Table 3 are the 
numbers of  child deaths from perinatal 
originating conditions in nine groups of  
provinces, based on the Thai 2005 Verbal 
Autopsy (VA) study [21, 22, 23, 24]. For 
the question, “Is the proportion of  deaths 
from perinatal originating conditions in 
Chumporn province different from those in 
other provinces in Thailand ? “, the results are 
shown in Table 4. 

Table 2. Average p-values from nine recom-
mended tests for testing the association in 
two-by-two tables with zero cell count.

Test
Averaged 
p-value 

Pearson’s uncorrected chi-squar 0.0320
Pearson’s corrected chi-square 0.1528
Pearson’s test with Monte Carlo 
simulation 0.0970

Fisher’s exact test 0.0939
Conditional Binomial Exact Test 
(CBET) 0.0469

Barnard’s exact test 0.0694
Liebermeister’s test 0.0332
Penalized Maximum Likelihood 0.0478
Lancaster’s mid-P test 0.0501

Table 3. Number of  child death from perinatal 
originating conditions by province.

Provinces
Cause of  death

Total
Other Perinatal 

Other 84 59 143
Chumporn 6 0 6

Table 4. Average p-values from nine recom-
mended tests for comparing proportion of  
child deaths from perinatal originating con-
ditions.

Test
Averaged 
p-value 

Pearson’s uncorrected chi-square 0.0429
Pearson’s corrected chi-square 0.1100
Pearson’s test with Monte Carlo 
simulation 0.0838

Fisher’s exact test 0.0815
Conditional Binomial Exact Test 
(CBET) 0.0483

Barnard’s exact test 0.0541
Liebermeister’s test 0.0423
Penalized Maximum Likelihood 0.0441
Lancaster’s mid-P test 0.0588
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The p-values from those nine recom-
mended tests show that the tests including 
Pearson’s uncorrected chi-square test, CBET, 
Liebermeister’s test and Penalized Maximum 
Likelihood gave p-values 0.0429, 0.0483, 
0.0423 and 0.0441, respectively, indicating 
that Chumporn province differed from other 
provinces. 

4. CONCLUSION AND DISCUSSION
This study compared the accuracy of  

nine separate tests of  the association in two-
by-two tables, where one cell contained a zero 
count, using a reference p-value equal to 0.05. 
When comparing the individual p-value with 
the reference p-value, most of  the tests gave 
p-values in the range from 0.01 and 0.2. This 
study showed that the methods of  Pearson’s 
chi-squared test and Fisher’s exact test were 
not appropriate for this condition of  a zero 
count in a two-by-two tables, because of  the 
high p-values resulting from their application.

Lancaster’s mid-P test, Conditional 
Binomial Exact Test and a method using 
penalized maximum likelihood were identified 
as acceptable and clearly preferable in testing 
the association in two-by-two tables with zero 
counts. These three methods consistently 
produced results close to the reference 
(p=0.05), in average as shown in Table 2 and 
in range as shown in Figures 1 and 2. 

For CBET, this confirms the finding by 
Rice (1988) that CBET can be used in place of  
Fisher’s exact test when analyzing contingency 
tables that compare binomial proportions. In 
addition, this study can also recommend the 
use of  Lancaster’s mid-P test and penalized 
maximum likelihood. The three methods, 
Conditional Binomial Exact Test, Lancaster’s 
mid-P test and penalized maximum likelihood 
can be recommended in cases of  testing the 
association in two-by-two tables with zero cell 
counts. Since the main objective of  this study 
was not to identify the best method but to 

compare the results when using recommended 
tests for association in two-by-two tables, this 
study can not conclude which method is best. 
The answer to this question are depend on 
many conditions, for example, the important 
of  the data, software availability and simplicity 
of  calculation. 
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