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Abstract. The highly conserved Duffy binding-like domain 1 a (DBL1α) of Plasmo-
dium falciparum erythrocyte membrane protein-1 (PfEMP1) is central to cytoadher-
ence properties of infected erythrocytes. Antibodies against DBL1α in plasma from 
African children in high malaria transmission settings disrupt rosettes (clumping 
of infected to uninfected erythrocytes) and may possibly protect against severe 
malaria. This phenomenon has not been established in low transmission settings 
in Asia. Using ELISA reactivity towards a recombinant DBL1α was examined 
in 53 plasma samples from patients with uncomplicated falciparum malaria in 
Thailand compared to 13 negative plasma controls and related to disruption of 
rosette formation. Plasma reactivity to DBL1α was stronger in patient samples 
compared to non-immune controls (p < 0.0001). Overall, antibody concentrations 
against DBL1α did not correlate with rosette disruption of P. falciparum strain 
FCR3S1.2 (r = -0.06; p = 0.72), but plasma containing antibodies to DBL1α did 
disrupt rosette formation by > 15% in 52% and ≥ 50% in 10% of samples. There 
was no correlation between presence of antibodies and patient’s age.  In conclu-
sion, patients with uncomplicated falciparum malaria produce antibodies against 
DBL1α domain of PfEMP1, resulting in partial disruption of rosette formation, 
similar to the results obtained in African children. This might have a protective 
effect on disease severity.
Keywords: antibody, DBL1α domain, PfEMP1, rosette formation, uncomplicated 
falciparum malaria

INTRODUCTION

Malaria remains a major cause of mor-
bidity and mortality. The vast majority of 
malaria deaths are caused by Plasmodium 
falciparum (Greenwood et al, 2005; Snow 
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et al, 2005; WHO, 2016). It is known that 
repeated multiple exposures to P. falci-
parum parasites induce after several years 
immunity-mediated protection against 
severe disease. This protective immunity 
is thought to be mediated partly by anti-
bodies against variable surface proteins 
expressed by the parasite blood stages, of 
which P. falciparum erythrocyte membrane 
protein-1 (PfEMP1) is the major antigen 
(Miller et al, 2002; Mackinnon and Marsh, 
2010). 

Against PfEMP1 (200-350 kDa) is en-
coded by a var family and contains several 
Duffy antigen binding-like ectodomains 
(DBL1–5), including one to two cysteine-
rich inter-domain regions (CIDRs) (Su et al,  
1995; Smith et al, 2000). PfEMP1 binds to 
a variety of host cells receptors involved 
in cytoadherence to host endothelium 
and in rosette formation whereby infected 
red blood cells (iRBCs) bind to clusters of 
uninfected RBCs (MacPherson et al, 1985; 
Kraemer and Smith, 2006). Antibodies to 
PfEMP1 can disrupt rosette formation 
and protect against cytoadherence of 
iRBCs (Carlson and Wahlgren, 1992; Ba-
ruch et al, 1995; Smith et al, 1995). Duffy 
binding-like domain-α (DBL1α) has the 
most conserved sequence of all PfEMP1 
domains and mediates the rosetting and 
cytoadhesive phenotypes of P. falciparum 
iRBCs (Chen et al, 1998a; Flick and Chen, 
2004; Kraemer et al, 2007; Albrecht et al, 
2011). In addition, heparin or heparan-
sulfate can bind directly to DBL1α domain 
and thereby disrupt rosetting and cytoad-
hesive properties of PfEMP1 (Barragan  
et al, 2000; Vogt et al, 2003). Thus, it has 
been proposed that DBL1α has a central 
role in parasite rosette formation and 
sequestration in the microvasculature, 
central to the pathogenesis of severe 
malaria (Treutiger et al, 1992; Rowe et al, 

1995; Chen et al, 2000; Heddini et al, 2001; 
Pathirana et al, 2005). 

How immunity to the highly variable 
PfEMP1 antigens develops is not com-
pletely understood. In culture, parasite 
populations switch to a new variant of 
PfEMP1 at an average rate of about 2% 
per asexual cycle, although this can be 
considerably higher in patients (Roberts 
et al, 1992). Interestingly, the particular 
var expressed is dependent in part on the 
variant produced in previous cycles, likely 
the result of selection through the host 
immune response (Horrocks et al, 2004; 
Frank et al, 2007; Mok et al, 2008; Duffy  
et al, 2009). Recently it has been shown that 
plasma samples from African children in 
a high malaria transmission setting in  
Cameroon contain antibodies to recom-
binant DBL1a (NTS-DBL1α of IT4var60 
gene) expressed by P. falciparum strain 
FCR3S1.2. There was a correlation be-
tween these antibody levels and disrup-
tion of rosette formation of P. falciparum 
laboratory strain FCR3S1.2 (Albrecht et al, 
2014). In addition, immunization of rats 
and macaques against the NTS-DBL1α do-
main from P. falciparum FCR3S1.2 has been 
shown to diminish sequestration of this 
strain (Moll et al, 2007). It is not known if 
patients in low transmission settings, and 
thus with much less exposure to theses an-
tigens, develop a similar response to NTS-
DBL1α and whether plasma obtained from 
patients in this setting can disrupt rosette  
formation.

We assessed the levels of naturally 
circulating antibodies against NTS-DBL1α 
domain in plasma from patients with un-
complicated falciparum malaria obtained 
in low transmission settings in Thailand. 
The ability of these antibodies to disrupt 
rosette formation might protect against 
the severity of falciparum malaria.
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MATERIALS AND METHODS

Study subjects and sample collection
Plasma samples were obtained from 

patients with uncomplicated P. falciparum 
infections admitted to Mae Sot and Mae 
Ramat Hospital, Tak Province, Thailand 
(Thai- immune), and from non-infected 
individuals from non-endemic regions in 
Bangkok, Thailand  (Thai-non  immune)  
and  in Stockholm,  Sweden  (Swedish-non  
immune).  As a positive control, purified 
IgG obtained from pooled Malawian 
hyper-immune plasma was used (Taylor 
et al, 1992). Citrate anticoagulated blood 
samples were collected prior to start of 
antimalarial drugs treatment.  Five ml of 
P. falciparum blood samples (n = 53) were 
collected in acid citrate dextrose tube. 
Blood samples were prepared for micro-
scopic malaria parasite identification of 
thick and thin blood smears and blood 
group assessment. Samples were then 
centrifuged at 800g for 5 minutes at 4°C 
and plasmas were stored at -80°C until 
further assessments.

Written informed consents were 
obtained from all patients prior to blood 
sampling. Ethical approvals were ob-
tained from the Ethics Committee of 
Faculty of Tropical Medicine, Mahidol 
University, Bangkok (registration no. 
NCT01442168) and from the ethical com-
mittee at Karolinska Institutet (registra-
tion no. 2009/3:5).
Heterologous production of recombinant 
N-terminal sequence of Duffy binding-like 
α domain (NTS-DBL1α) in Escherichia coli

E. coli SG13009 (Qiagen, Venlo, Neth-
erlands) harboring pQE60 or pQE70 vec-
tor (Qiagen, Düsseldorf, Germany) was 
cultured in LB broth medium at 37°C until 
A600 nm of 0.8-1.0 was reached, then was in-
cubated for an additional 3 hours at room 

temperature after addition of 100 nM 
isopropyl-beta-D- thiogalactopyranoside. 
The culture was centrifuged at 990g for 20 
minutes and the pellet was suspended in 
washing buffer (20 mM HEPES, 30 mM 
imidazole and 500 mM NaCl) and incu-
bated with 1 mg/ml lysozyme (BioSite, 
San Diego, CA) on ice for 30 minutes, then 
1X Complete Cocktail Protease Inhibitor 
solution (Roche, Basel, Switzerland) was 
added. The suspension was sonicated 
for 30 seconds on ice using a Branson 
Digital Sonifier (Danbury, CT) at 30% 
amplitude for five times and subsequently 
centrifuged at 13,250g for 20 minutes. Pu-
rification of His-tag NTS-DBL1α was per-
formed using a His GraviTrap column (GE 
Healthcare, Uppsala, Sweden) according 
to the manufacturer ’s instructions. In 
short, the supernatant was applied onto 
the column and the flow through solution 
applied once more to the column, which 
then was washed extensively with wash-
ing buffer and recombinant NTS-DBL1α 
eluted with 20 mM HEPES buffer contain-
ing 500 mM imidazole and 500 mM NaCl. 
Elution was monitored at A280 nm and the 
peak fractions were collected and ana-
lyzed by SDS-PAGE. Fractions containing 
the highest concentration of pure protein 
were pooled and concentrated. The iden-
tity of the purified protein was confirmed 
by western blot using PfEMP1-variant 
(ITvar60)-specific antibodies (Angeletti 
et al, 2012).

Assessment of anti-NTS-DBL1α antibodies
ELISA was used to assess plasma 

anti-NTS-DBL1α antibody levels.  In brief, 
Maxisorp plates (Nunc, Roskilde, Den-
mark) were coated overnight at 4°C with 
10 µg/ml NTS-DBL1α in coating buffer 
(15 mM Na2CO3 and 35 mM NaHCO3, pH 
9.6), followed by incubation with 3% (w/v) 
bovine serum albumin (Sigma-Aldrich) in 
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phosphate-buffered saline (PBS) for 1 hour 
at room temperature and then plates 
were washed three times with PBS-T 
(0.05% Tween 20 in PBS). Plasma samples 
[1:500 and 1:1,000 dilution in phosphate-
buffered saline (PBS)] were incubated for 
1 hour at room temperature. Plates were 
washed as described above and bound 
and IgG was  detected  by  incubating  for  
1 hour  at room temperature with alkaline  
phosphatase-conjugated goat anti-human 
IgG (Sigma, St Louis, MO) diluted 1:1,000 
in PBS, followed by incubation with  p-
nitrophenyl phosphate solution (Sigma) 
for 45 minutes. A405 nm then was measured 
in an ELISA plate reader (Multiskan EX 
Version 1.2, Labsystems, Stockholm, 
Sweden). Cut-off threshold for seroposi-
tivity is defined as mean plus standard 
deviation (SD) value of negative control 
samples (Albrecht et al, 2014). All assays 
were performed in duplicate.
Rosette disruption assay

Rosetting formation and disruption 
by plasma were assessed using P. falci-
parum strain FCR3S1 with high rosetting 
capability and the ability to bind non-
immune IgM (Fernandez et al, 1998).   Cut-
off point for rosette disruption is defined 
as > 15% disruption compared to control 
(Carlson et al, 1990).  Parasites were cul-
tured using standard protocol (Moll et al, 
2008). In brief, parasites were cultivated at 
5% hematocrit in malaria culture medium 
supplemented with 10% Swedish non-
immune AB+ serum and synchronized 
at ring stage by treating with 5% (w/v) 
sorbitol (Lambros and Vanderberg, 1979). 
Rosetting rate was determined by calcu-
lating the number of trophozoite-infected 
red blood cells (iRBCs) forming rosettes 
relative to total number of trophozoite 
iRBCs present in culture. A rosette is de-
fined as at least two or more uninfected 
RBCs bound to one iRBC (Moll et al, 2008). 

The ability of a patient’s plasma to dis-
rupt rosettes was assayed as described 
previously (Treutiger et al, 1992). In brief, 
plasma (1:5 dilution) was added to 20 ml 
of parasite culture (2% hematocrit and 
5-10% parasitemia and incubated at 37°C 
for 60 minutes. Parasites were stained 
with acridine orange and rosetting rate 
was measured. For each sample at least 
100 iRBC were counted. As a positive con-
trol, Malawian IgG from hyper-immune 
plasma pool was used (Taylor et al, 1992) 
and plasma samples from non-immune 
Thai and Swedish blood donors were 
employed as negative controls.
Statistical analysis

Data were analyzed using SPSS 
version 18 statistical software (IBM, Ar-
monk, NY) and GraphPad Prism version 
5 (GraphPad Software, La Jolla, CA). 
Correlation between antibody levels 
and rosette disruption were assessed by 
Pearson’s method. Relationship between 
antibody levels, rosette disruption and 
admission parasite density were assessed 
by Spearman’s method. A p-value of < 0.05 
is considered significant. 

RESULTS

Plasma anti-NTS-DBL1α immune status
Of a total of 53 Thai patients with 

uncomplicated P. falciparum, mean (SD) 
age was 30 (9) years, hematocrit 38% 
(5%), and median (range) parasite density 
26,777 (10,034-99,590)/µl. Using recombi-
nant NTS-DBL1α as antigen in an ELISA,  
A405 nm (mean ± SD) of non-immune Thai 
and Swedish plasma negative samples 
was 0.30 ± 0.30 (Fig 1), and A405 nm (mean ± 
SD) of Malawian IgG from hyper-immune 
plasma pool ( positive control) was 3.26 ± 
0.13. Using a cut-off value of A405 nm 0.60, 
41/53 (77%) Thai-immune plasma samples 
were positive for presence of anti-NTS-
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Fig 1–Naturally acquired antibody level to NTS-DBL1α in 53 
plasma samples from Thai patients with uncomplicated 
falciparum malaria. Antibody level to affinity purified 
recombinant NTS-DBL1α was measured by ELISA and 
expressed as OD405 nm. Negative controls were 13 non-
immune Thai and Swedish plasma samples. Dash hori-
zontal line indicates cut-off value (OD405 nm = 6.0).  The 
long and short bar indicates mean and ±SD, respectively. 
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DBL1α antibodies (Fig 1). The presence of 
antibodies against NTS-DBL1α was nega-
tively correlated with admission parasite 
density (Spearman r = -0.296, p = 0.033) 
and admission hematocrit (Pearson r = 
-0.357, p = 0.009), but not with age (Pear-
son r = -0.112, p = 0.425) (Fig 2).
Plasma rosette disrupting activity

 Thai plasma samples (n = 42) were 
tested for activity against rosette forma-
tion. Mean (SD) age and hematocrit of 
the patients was 30.5 (8.9) years and 39% 
(4%), respectively. Median (range) para-
site density was 25,153 (10,034-99,590)/
µl. A total of 22/42 (52%) plasma samples 
were able to disrupt rosette formation 
of P. falciparum FCR3S1.2 iRBCs (Fig 3). 
In 4/42 (10%) samples rosette disruption 
was ≥ 50%, and 18 (43%) plasma samples 
with positive anti-NTS-DBL1α antibodies 
showed rosette disruption activity (>15% 

(rosette formation) contribute to microcir-
culatory flow obstruction, which forms a 
central feature in the pathophysiology of 
falciparum malaria (MacPherson et al, 1985; 
Wahlgren et al, 1994; Cooke and Coppel  
et al, 1995; Miller et al, 2002; Kirchgat-
ter and Del Portillo 2005; Dondorp et al, 
2008a). Both adherence phenotypes are 
conferred by PfEMP1; of which those in-
volved in rosette formation are encoded 
by group A var genes (Chen et al, 1998b; 
Jensen et al, 2004). The NTS-DBL1α do-
main of PfEMP1 encoded by IT4var60 
gene is implicated in rosette formation 
and is associated with severe disease 
(Albrecht et al, 2014). 

In the current study, plasma from 
patients with uncomplicated falciparum 
malaria contained antibodies reactive 
towards recombinant NTS-DBL1α. An-
tibody levels were negatively correlated 

of  rosettes were disrupted). 
Only 4 (9%) plasma samples 
with negative anti-NTS-
DBL1α antibodies showed 
rosette disruption activity.  
However, the proportion 
of rosette disruption is not 
significantly correlated with 
the antibody level against 
NTS-DBL1a (Pearson r = 
-0.058, p  = 0.716) (Fig 3) or 
with patient’s age (Pearson r 
= 0.199, p = 0.206), admission 
parasite density (Spearman r 
= 0.059, p = 0.712) or admis-
sion hematocrit (Pearson r 
= - 0.044, p = 0.787) (data not 
shown). 

DISCUSSION

Adherence of P. falci-
parum iRBCs to endothelial 
cells and to uninfected RBCs 
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Fig 2–Correlation   between   naturally   acquired   
plasma   antibody   levels   towards recom-
binant NTS-DBL1α in 53 Thai patients 
with uncomplicated falciparum malaria 
and (A) admission parasite density, (B) 
admission hematocrit, and (C) patient’s 
age. Antibody level was measured as 
described in legend to Fig 1. r, correlation 
coefficient; p, p-value.
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with parasite density and hematocrit. 
This is in agreement with findings of an 
African study in a high transmission set-
ting (Albrecht et al, 2014). However, unlike 
in the African setting, multiple parasite 
clonal infections in Asian low transmis-
sion setting are relatively rare, (Anderson  
et al, 2011). High parasitemia and low 
hematocrit in low transmission settings 
usually denote longer duration of infec-
tion (Dondorp et al, 2008b; Tangpukdee  
et al, 2012; WHO, 2012), which could ex-
plain the phenomena observed. 

Surface exposed malaria parasite mo- 
lecules, such as PfEMP1, show high vari-
ability between strains as well as within 
strains during infection, thereby contri- 
buting to host immune evasion (Nielsen 
et al, 2002; Chan et al, 2014). However, 

Fig 3–Correlation between naturally acquired 
antibody levels towards recombinant 
NTS- DBL1α and rosette disruption in 
P. falciparum laboratory strain FCR3S1.2, 
assessed in plasma from 42 Thai patients 
with uncomplicated falciparum malaria. 
Antibody level was measured as de-
scribed in legend to Fig 1. A rosette is 
defined as at least two or more uninfected 
RBCs bound to one trophozoite infected 
(i)RBC. For each sample at least 100 iRBC 
were counted.  Dash line indicates cut-off 
value (15%). r, correlation coefficient; p, 
p-value. 

r = -0.058
p = 0.716
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within  the PfEMP1 sequence, the DBL1α 
domain is much more conserved (Ward  
et al, 1999; Flick et al, 2004; Ralph and 
Scherf, 2005), and antibodies against 
recombinant NTS-DBL1α domain have 
been shown to cross-react against various 
rosetting-associated variants (Magistrado 
et al, 2007). In this study we confirm that 
a majority (52%) of plasma samples con-
taining antibodies against the conserved 
DBL1α domain disrupted rosette forma-
tion of a high rosetting forming P. falci-
parum FCR3S1.2 strain. Although studies 
from Africa in high transmission settings 
showed a correlation between DBL1α 
antibody level and the ability of rosette 
disruption (Albrecht et al, 2014), but this 
was not the case in a setting of low malaria 
transmission.  This was not observed in 
the current study. A possible explanation is 
that DBL1α antibodies in the current study 
may have higher avidity than in the Af-
rican study, so that lower antibody levels  
are able to mediate rosette disruption.

In conclusion, PfEMP1-DBL1α from 
infected erythrocytes in patients with 
uncomplicated malaria in Thailand in-
duces an antibody response that is able to 
disrupt rosette formation. Further studies 
will be needed to investigate the relevance 
of these findings to the pathophysiology 
of patients with uncomplicated falci-
parum in low transmission settings.
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