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Abstract 
 
We study the properties of the geodesics on a Randers rotational surface of revolution by using 
Zermelo navigation data ( ),h W , where h  is the induced Riemannian metric on the surface of 
revolution and W  is the rotational wind. We are in special interested in the half-period function 
that can be computed by similar methods to the Riemannian case. Our result can be applied to find 
the structure of the cut locus of a Randers rotational 2-sphere of revolution. 
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1. Introduction 
 
The Riemannian geometry is one of the important research topics for differential geometry field. 
In general, Riemannian geometry has many interested topics to study, but they are almost well 
known study. So we are interested to do research in something more complicated or general 
(nearest the problem in real world) more than Riemannian geometry, that is Finsler geometry ([1], 
[2]). In this paper we will show that Riemannian case is the special case of Finsler case and we use 
the Randers metric as an examples for the Finsler case. In the case of a Riemannian surface of 
revolution, one can study the behaviour of geodesic by using Clairaut relation, we can see that if 
the geodesic is neither a profile curve nor s parallel then it will be tangent to the some parallel. The 
length between starting point and returning point can be calculate by using half period function.
 The aims of studing the half-period function for Randers rotational case is to find the cut 
locus on Randers rotational surface of revolution. If we can find the exactly form of this function 
then we can see the behavior of the cut locus. In this paper, we will show how to construct the half 
period function for Randers rotational surface of revolution. 

 
 

2. Materials and Methods 
 
2.1 The geometry of Riemannian surface of revolution 
We recall the definition of Riemannian geometry. 
Definition 2.1 (Local surface) A subset S  of 3  is called a local surface if there exists a C∞  
map ϕ  of a domain D  in 2  into 3 , i.e. ( , ) ( ( , ), ( , ), ( , ))u v x u v y u v z u vϕ =  , such that 
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1. ( )S Dϕ=  

2. ϕ  is injective. 

3. the rank of the matrix u

v

ϕ
ϕ
 
 
 

 is 2 at each point on D . 

Definition 2.2 (2-sphere of revolution) A compact Riemannian manifold ( , )M h  homeomorphic 
to a 2-sphere is called a 2-sphere of revolution if M  admits a point p  such that for any two points 

1q , 2q  on M  with 1 2( , ) ( , )d p q d p q= , where (, )d  denoted the Riemannian distance function, 
there exists an isometry f  on M  satisfying 1 2( )f q q= and ( )f p p= . The point p  is called a 
pole of M . Let ( , )r θ  denote geodesic polar coordinates around a pole p  of ( , )M h . The 
Riemannian metric can be expressed as 2 2 2( )h dr m r dθ= +  on \{ , }M p q , where q  denotes the 
unique cut point of p  , i.e. p , q  are called a pair of poles. 
 From Definition 2.2 we can construct the classical Riemannian surface of revolution by 
rotating a unit speed smooth curve ( )x f z= , where : [ , ]f a b →  , ,a b∈  and ( ) ( ) 0f a f b= = , 
include in the xz  plane around the z  axis. We will consider the curve f  in parametric form 

( )
:

( )
x m r

f
z z r
=

 =
, 

where [ , ]r a b∈ , 0m >  and of the Euclidean unit speed condition, that is 
2 2( '( )) ( '( )) 1m r z r+ = . 

Then we obtain the surface of revolution 
( ): ( , ) ( ) cos , ( )sin , ( )M r m r m r z rϕ θ θ θ= = , [ , ]r a b∈ , [ )0,2θ π∈ . 

One can see that the mapping ϕ  is satisfied Definition 2.1. 
 We recall the Riemannian metric on surface of revolution is 

2 2 2 2( )ds dr m r dθ= + , 
and the geodesic equations of h  -unit speed ( ) : ( ( ), ( ))s r s sγ θ=  of ( , )M h  are 

22

2

2

2

' 0

'2 0

d r dmm
dsds

d m dr d
m ds dsds

θ

θ θ

  − =    
 + =

, 

with the unit speed condition 
2 2

2 1dr dm
ds ds

θ   + =   
   

. 

Remark 2.3 We can see that every profile curve, i.e. 0( ) : ( ( ), )s r sγ θ= , where 0θ  is constant, is an 
h  -geodesic and parallel, i.e. 0( ) : ( , ( ))s r sγ θ= , where 0r  is constant and 0'( ) 0m r = , is an h  -
geodesic. 
Theorem 2.4 (Clairaut relation [3]) If ( ) : ( ( ), ( ))s r s sγ θ=  is a geodesic on surface of revolution 
( , )M h  then the angle ( )sφ  between tangent vector of ( )sγ  and the profile curve passing through 
a point ( )sγ  satisfy 

( ( ))sin ( )m r s sφ ν= , 
where ν  is constant and called Clairaut constant. 
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Lemma 2.5 The Clairaut constant for any profile curve is vanishes, i.e. 0ν = . 
 From Clairaut relation, we can see that if ( )sγ  is neither a profile curve nor a parallel, i.e. 

( )0, ( )m rν ∈ , then for some 1 0t > , 1( )tγ  will be tangent to the same parallel of (0)γ , where 
(0)γ  is the emanating point of geodesic. 

 Let us denoted the geodesic that emanating from a point 0p  with Clairaut constant ν  by 
0p

νγ . 
Remark 2.6 We always assume that our 2-sphere of revolution with a pair of poles p , q  
satisfying the following properties 
 1. ( , )M h  is symmetric with respect to the reflection fixing r a= , where 2a  denotes the 
distance between p  and q  . 
 2. The Gaussian curvature G  of M  is monotone along a profile curve from the point p  
to the point on r a=  . 

We can find the length between 0 (0)p
νγ  and 0

1( )p tνγ  by using 
Lemma 2.7 (Half period function of Riemannian surface of revolution) Let 0p

νγ  be an h  -unit 
speed geodesic, where { }0p r a∈ = and ( )0, ( )m aν ∈  , i.e. 0p  is a point on equator and 0p

νγ  is 

neither meridian nor equator. From Clairaut relation 0p
νγ  must be tangent to the parallel ( )ξ ν  and 

return to the equatorat 0
1( )p tνγ  . The distance from 0p  to 0

1( )p tνγ  can be computed by 

( ) 2 2
( ) : 2

( ) ( )

a
H dt

m t m tξ ν

νν
ν

=
−

∫  

where H  is called half period function. 
 
2.2 The geometry of Randers rotational surface of revolution 
In this section, we will consider that if there is a wind blow up on our surface of revolution along 
the parallel, by using Zermelo navigation problem [4], therefore we obtained 
Proposition 2.8 (Randers rotational metric [5]). If ( , )M h  is a surface of revolution whose 

profile curve is the bounded function 
1( )m r
µ

<  and W µ
θ
∂

= ⋅
∂

 is the breeze on M  blowing 

along parallels, then the Randers metric ( , )M F α β= +  obtained by the Zermelo’s navigation 

process on M  is a Finsler metric on M  , where ( ) i j
ija x y yα = , ( ) i

ib x yβ =  are defined in 

2 2

2

2 2 2

1 0
1

( )
0

(1 )

ij

m
a

m
m

µ

µ

 
 − =
 
 

− 

, 2

2 2

0

1
ib m

m
µ
µ

 
 =  
 − 

 , , 1, 2.i j =  

We obtained the flow of the wind ( ; ( ), ( )) ( ( ), ( ) )s r s s r s s sϕ θ θ µ= +  . 
 From [6], the geodesic equation of F  -unit geodesic 1 2( ) ( ( ), ( ))P s P s P s=  is 

22 1 2 2

2

2 2 1 2 1

2

' ' 2 0

' '2 2 0

d P dP dPmm mm
ds dsds

d P m dP dP m dP
m ds ds m dsds

µ µ

µ

    
 − − − =       


− − =
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Remark 2.9 If ( ) : ( ( ), ( ))s r s sγ θ=  be a geodesic on ( , )M h  then we obtained geodesic ( )P s  for 
( , )M F  constructed as above by ( ) ( , ( )) ( ( ), ( ) )P s s s r s s sϕ γ θ µ= = + . 

 
 

3. Results and Discussion 
 

In this section we assume that there is a wind :W µ
θ
∂

=
∂

 blowing along the parallels on 2-sphere 

of revolution ( , )M h , where 
[ ]{ }

1
max ( ) : 0, 2m r r a

µ ≤
∈

. Therefore we obtain the Randers 

rotational 2-sphere of revolution ( , )M F α β= + . 
So, we can obtain our main result 

Theorem 3.1 (Half period function of Randers rotational 2-sphere of revolution) Let 
0 ( ) ( ( ), ( ) )pP s r s s sν θ µ= +  be an F -unit speed geodesic obtained by 0( ; ( ))ps sνϕ γ , where 0 ( )p sνγ  is 

an h -unit speed geodesic on ( , )M h , emanating from { }0p r a∈ =  and ( )0, ( )m aν ∈  if the 

direction of 0 ( )pP sν  is along the wind then 0 ( )pP sν  will tangent to parallel ( )ξ ν at 0
1( )pP tν and 

return to the equator at 0
0( )pP tν . The distance from 0p  to 0

0( )pP tν  can be computed by 

    ( ) ( ) ( )FH Hν ν ψ ν+ = + ,          (3.1) 
Where ( ) : 2 ( ( ))aψ ν µ ξ ν= − . 
In the others hand, if the direction of 0 ( )pP sν  is against the wind then the distance is 

    ( ) ( ) ( )FH Hν ν ψ ν− = − .          (3.2) 
Proof. In this proof we denoted 0 ( )p sνγ  by ( )sγ  and 0 ( )pP sν  by ( )P s . 
Let ( ) ( ( ), ( ))s r s sγ θ=  be an h -unit speed geodesic, i.e. 

    

2 2
2 ( ( )) 1dr dm r s

ds ds
θ   + =   

   
.         (3.3) 

Multiply (3.3) with 
2ds

dθ
 
 
 

, we have 

    

2 2
2 ( ( ))dr dsm r s

d dθ θ
   + =   
   

.         (3.4) 

From Clairaut relation we have 

    

2 ( ( ))ds m r s
dθ ν

= .           (3.5) 

Therefore (3.4) can be written as 

    

2 2 2 2

2

( ( ))( ( ( )) )dr m r s m r s
d

ν
θ ν

−  = 
 

,         (3.6) 

or 

    
2 2( ( )) ( ( ))

d
dr m r s m r s
θ ν

ν
=

−
.         (3.7) 

By integrating (3.7), we get 
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( )

2 2
( )

( ) ( )
( ( )) ( ( ))

r b

r a

b a dr
m r s m r s

νθ θ
ν

− =
−

∫ .         (3.8) 

From Clairaut relation we know that the geodesic ( )sγ  emanating from the point (0)γ  on the 
parallel will tangent to other parallel called { }( )r ξ ν=  at 1( )tγ  and after that it will return to the 
parallel again. We can see that 0 0 1( ) (0) 2( ( ) ( ))t t tθ θ θ θ− = −  , i.e. 

   
0 2 2

( )

( ) : ( ) (0) 2
( ) ( )

a

H t dt
m t m tξ ν

νν θ θ
ν

= − =
−

∫ ,        (3.9) 

( )H ν  is called h -half period function. Recall that 

    

( )

( )

r bb

a r a

dsb a ds dr
dr

− = =∫ ∫ .        (3.10) 

From ( ) ( ( ), ( ) )P s r s s sθ µ= +  obtained from ( )sγ , we have 

    

1dP dr
ds ds

= , 
2dP d

ds ds
θ µ= + ,       (3.11) 

and therefore 

    

2 2

1 1

2

dP dP ds
dsdP dP

dP d ds
dr ds dr

d ds
dr dr

θ µ

θ µ

=

 = + 
 

= +

.        (3.12) 

 
By integrating (3.12), we get 

   

( )
2 2

( )

( ( )) ( ( ))
r b

r a

d dsP r b P r a dr
dr dr
θ µ − = + 

 ∫ .       (3.13) 

We will consider in the case that ( )P s  will tangent to the parallel { }( )r ξ ν=  at 1( )P t  and return 
to equator at 0( )P t  , from (3.9) and (3.10) therefore we got (3.1) 

2 2
0

( )

( ) ( ) (0)

2

( ) 2 ( ( ))

F
a

H P t P

d ds dr
dr dr

H a
ξ ν

ν

θ µ

ν µ ξ ν

+ = −

 = + 
 

= + −

∫ . 

If we consider the geodesic that against the wind ( ) ( ( ), ( ) )P s r s s sθ µ= − , we get (3.2) 
( ) 2 ( ( ))FH H aν µ ξ ν− = − − . 

Remark 3.2 The function ( ) 2 ( ( ))aψ ν µ ξ ν= −  is decreasing function, where ( ) (0, )aξ ν ∈ , and it 
is increasing, where ( ) ( , 2 )a aξ ν ∈ . 
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4. Conclusions 
 
Finally, we can find the half period function for Randers rotational 2-sphere of revolution 
therefore we can see the structure of cut locus on Randers rotational 2-sphere of revolution as in 
[7]. 
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