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Abstract

Let f(X,%,....X)€K[X, %,,...,%], where K is a quadratic field. We investigate the
polynomial f(x,,X,,..., X ) which becomes always ann" power of an quadratic integer using the
technique of Kojima. It is shown that if f (e, c,,...,,)is ann"™ power of an element in O, , the
ring of integers of K, then fF O Xy X ) = (B(X, %y %)) Jfor  some
AX, Xy X ) €O DX X ey X ]
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1. Introduction

In 1912, Jentzsch [1] proposed the following problem.
If a polynomial f (x) with integral coefficients is a square of an integer for any integral
value of x, then f (X) is a square of a polynomial with integral coefficients.

Grosch solved it in 1913 and later in 1915, Kojima [1, Theorem 6°, p. 32] extended it to
the following theorem.

Let f(x,X,,...,X,) be a polynomial in x,X,,...,X, with integral coefficients. If for any
integral values of x;,X,,...,X, it becomes always power of an integer, n being a positive integer, then
f (X, X,,-.-, X, ) hasthe form p(x,,%,,..., %, )", where @ is a polynomial with integral coefficients.

In 1950, Fuchs [2] proved the following much more general result.
If f(x) andg(x)are polynomials and if for every integer p > p,, there is an integer

g=9(p) >0 such that f(p)=g(q), then f(x) =g(h(x)), whereh(x) is a polynomial. If f(x)

and g(x) have integral coefficients and g(x) has leading coefficient 1, then h(x) also has integral

coefficients. Later in 1957, Shapiro [3] gave a simple proof of the following generalization.
Let P(x) and Q(x)be polynomials which are integer-valued at the integers, of degrees

P and(, respectively. If P(n) is of the formQ(m) for all n , or even for in finitely many blocks

of consecutive integers of length> P , 5 ;then there is a polynomial R(x) such that P(x) = Q(R(x))
q
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Motivated by these results, it is natural to ask whether the same result holds for
polynomials, of several variables, over a quadratic number field. We give here an affirmative
answer using the technique of Kojima [1].

2. Preliminaries

LetX (c C) be a quadratic number field, with O, as its ring of integers. We start with a few
important lemmas.

Lemma 2.1 If a polynomial P(x, X,,...,X.) € C[X,,X,,...,X.] vanishes when we substitute in it

any one of the elements «, ,,a, ,,....a, ,, ., fOrx,
any one of the elements Cyys Oy Oy for x, ,
and any one of the elements ¢, ., ,,..., e, , ., fOr X, ,

where the ¢ ; ’s are complex constants subject to the conditions
a; #a,, ,whenj=h, forall i=12..k,

andm, € Z satisfying m, > deg, P (i=1...,k), thenP(x,,...,x ) =0.
Proof. The case k =1 is trivial since a polynomial of degree m has M+1 roots. Assume the
result holds for a polynomial in K —1 variables. Writing P(x,,X,,...,X,) in the descending powers
of x as

P (X0 XX ) = Ay (Koo X )X+ A (X X )X o+ AL (X%, ),
and substituting each of X,,...,X, by any one of their assigned values, the resulting polynomial in
x, must be zero for m, +1 different values of x . Hence,

Ao(ozthz ,...,ak,hk):O, Al(azvhz,...,akvhk):0,..., A, (az,hz,...,ak'hk)zo,
where h, =12,...,m +1 and i =2,3,...,k. From the induction hypothesis, we have

A (%% )= 0,A (X% ) =0, AL (X000, %) =0,
And consequently, P(x,X,,...,%)=0.

Lemma 2.2 Let P(X,,X,,..., X)) € C[x,X%,,....X].If P(e,,...,) €K forany ay,...,a, €KX ,
then the coefficients of P(x,X,,..., %, )are all in K .

Proof. For case k =1, suppose that P(x) := a,x™ +a,x"* +---+a,  C[x]. Substituting distinct
values a,...,a,,, €K , we obtain

Qo +aa "t ++a, o +a, =P(y) €K,

m-1
m+1

m

o, +aan., ++a, o, +a, =Pla,,,) €X.

Since the coefficient matrix of this linear system

14



KMITL Sci. Tech. J. Vol.17 No.1 Jan.-Jun. 2017

m m-1
o' o a 1

m m-1
o, q a, 1
ar, ant o oy, 1

m+1 m+1

is a nonzero Vandermonde matrix, solving the system, we see that all a, e X .

Assume now that the statement holds for a polynomial in K —1 variables. Let P be a
polynomial in X, X,,..., X, and degree of m, in X . Let

P (XXX ) = Ay (Ko X D+ A (X X DT o+ AL (X X, ),
Fora,,...,a, ek ,1etQ(x) =P(x,a,,...,a,) € C[x] . By case k =1, we obtain
Q(x) € K[x,], which implies that

A(ey,...,q ) ek (i=0,1,...,m).
This holds for any ¢,,...,¢, €K .By the induction hypothesis, all
A (X, %) € K[X,,..., %] » showing that P(x,X,,...,X) € K[X,%,,..., X ].

We shall also need Hilbert’s irreducibility theorem [4, Theorem 33,p. 179] whose
convenient form is:

Theorem 2.3 Let K be a algebraic number field with ring of integers O, , and let f (x,,...,x,,y)
be an irreducible polynomial inx[x,..., x.,y]. Then there exists an infinite number of
specializations of variables x,,...,x, toa,...,a €O, suchthat f(a,,...,a,,y)Iis an irreducible
polynomial in K[y].

Another essential theorem is a version of Gauss’s lemma for a number field, [5],
Theorem 8.6 and Remark 8.7].
Theorem 2.4 Let K, be a algebraic number field with ring of integers O, and let f (x) € O, [x]. If
f(x) = g(x)h(x) for polynomials g(x) and h(x) in K[x]then g(x) and h(x) arein O, [x].

3. Results

Theorem 3.1 Leta(x,, X,,...,X,) be a branch of an algebraic function in x;, X,,..., X, defined by
an equation

(Y1 ) = A, (KX )Y A (5 )Y
+"'+A1(X1’X2""'Xk):0,

where A, A A,,..., A € C[X,X,,...,x] are all polynomials having no common factor and n

n-1

is the chosen least degree iny (i.e., f(y]|X;,X,,...,X )considered as a polynomial in y over
C[X,, Xy, .., X, ]is irreducible over C[x,X,,...,%,]-)
If a(x,X,,..., % )has one and the same value, when we substitute in it
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any one of the elements &, ,,...,& , ;4 fOrx,

any one of the elements &, ;, 0 5,.... & 5, 1 fOr X,
where the ¢; ; ’s are complex constant subject to the conditions
a,, =, (j=hi=12,.k),
andm; € Zsatisfying m; >deg, P (i=1...,k),then the algebraic function a(x,X,,...,%,)

must be constant.
Proof. Let ¢ be the value ofa(x,X,,...,X,)when we substitute the assigned values for

Xy Xg e X - Then f(C| X, X,,..., X, ) is the polynomial in x, X,,..., X, and vanishes for any one
set of the assigned values of x;,X,,..., X, . By Lemma2.1, f(c|x,,X,,...,X,)=0. Consider
FOY) = A (X0 X X )Y+ AKX X X )Y o AL (X X X ).
Since F(c) =0, we have(y—c)|F(y),which contradicts its irreducibility unlessn =1. Hence,
FOY %%, %) = F(y) = a(y —c),

where a € C. Thus, a(x;,X,,...,X,) =C.
Combining Theorem 3.1 with the above lemmas, we get

Theorem 3.2 If a branch of an algebraic function a(x,,x,,...,X,)takes a value in K when we
substitute X, X,,..., X, by elements in K_ ,then the numerical coefficients in f (y|x,X,,...,X,)are
in K .

Proof. First, we prove the theorem for an algebraic function of a single variable. Leta(X) be such
a branch of an algebraic function defined by

FOyI¥)=A(x)y" +A(X)y"™"+-+ AL (X)y+ A (x)=0, 3.1)
where
A(X)=a,x™ +a, X" +...+a

i,m -1

X+, (i=01...,n),3,, =1,

and all A (x)'s have no common factor. Then

#la,ay, =8, =My + (M +1)+ (M, +1)+-+ (M +1) =My + M +M, +---+m, +n
=m.

Let ¢,,C,,...,C,, be any m distinct elements in K . Then y.:=a(c)eK (i=12,...,m). Thus

we have the system of linear equations with regard to a, ,, whose coefficients are all quadratic

numbers,
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0= Ao(cl))ﬁn +Ai(cl)yf_l"""+A1—1(Cl)y1+ A1(Cl)
_ (clmO +8,,C0 7 .+ By 4G By ) y;
(@t +a et o a G A )Y

+ (anyocl”‘" +a,,¢" "+, +a,, G +a,, )

n,m,-1
0=A(Co)Yn + A(Cy) Yn +o+ AL (Cr) Y + A (Cr)
= (G + @y, Cpe ™ .+ g 1 g ) Vi

+(ayoCm +3, G B Ay )Y

Co T8y 0 )

n,m,-1

m, mn’
+ (anyocm +a,,C" +...+8

We claim that the elements c,,c,,...,C, can be chosen so that the determinant of this system
does not vanish. For otherwise, for anyc,,c,,...,C,, € X , the determinant

my—1,,n n m; y,n-1 n-1 m,
Yi - Y1 Gy e Y G
-1 n-1 m
. yz O 0 7 AP AR
@ (C Y1iCou YaieeiCo Y ) = R o : :
—1 -1 -1 n
y; o Yoo G ¥mo e Ymo e Gy
vanishes. Considering c,,C;,..., m,and consequently y,,V,,..., Y, as constants, it follows from

our assumption that a(x) is an algebraic function in x defined by
@, (X,a(X);Cy, Yy5---1Cy Yo ) = Owhich vanishes for any X € K . By Theorem 3.1,

@ (%,a(X);C,, V3.3 Y ) =0.
If gol(x, YiCy Yornn m,ym) considered as a polynomial in x and Yy does not vanish
identically, the equation (pl(x, ViCoiYoreons m,ym) 0 iny has a common root with the

equation (3.1); but since the degree of the equation ¢, =0 is not greater than n, and the degree
with respect to x of the coefficient of ynis less than that of (3.1), we must have

(pl(x, YiCoiYareeiCoys ym) 0 . and consequently the first principal minor of the determinant,
ie.,

=2\,Nn n my \,n-1 n-1 m,
Yo o Y2 G, - Y G
my—2,,n n m ,n-1 n-1 m,
o (C Vi y ) C" Yy ... Y3 Gy, Y e Gy
2 21 )21 m! m . . . . . . .
my—2 m, -1 -1 m,

Cn’ Ym -+ Ym CaVmo oo Ymoo o Gt 1

vanishes identically. In this expression, since the elements c,,c;,...,C, € K are arbitrary, by the

same reasoning as above, we have ¢, (X, YiCs, ¥Yar--iChs ym) 0, so the second principal minor,
i.e.,
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my—3,,Nn n m ,n-1 n-1 my
C3° Y3 ... Y3 031y3 A e Gy

my—-3,,n n m ,n-1 n-1 m,
Yy - Yo CYy e Yy Gy

my—3,,n n m ,,n-1 n-1 m,
Co Ym -+ Ym CuV¥nm " Yn o Gy

vanishes identically. Repeating this process, we arrive at

m, m, -1
Cm—mn +1 Cm—mn+1 o Cm—m,, +1
m, m,-1
Cm—mn+2 Cm—mn+2 t Cm—mn+2 — 0
- 1
m, m, -1
o Cn o

Which is a contradiction for distinct c;’s, showing that Theorem 3.2 is true for an algebraic
function of a single variable. Next, we prove the theorem for an algebraic function of several
variables. Let a(x;,X,,..., X, ) be a branch of the algebraic function defined by

FOY XX %) = A (X Xome e X )Y+ A (X X X )Y o+ A (X0 X000 % ) =0, (3.2)
where

AKXy %) =By g (Xg ey X)X 0+ By (X000 %) (1=0,12,...,n),
Where B, (h=0,1,2,...,m;)are polynomials in X,,...,X,.Substituting any elements

CZ,...,Q inK for x,,...,X,, respectively, into the equation (3.2) , we see that for every element
of x, € K, the equation

Ao(xl,cz,...,ck)y“+A&(x1,cz,...,ck)y”*1+...+A(@,cz,...,ck)zo
must be satisfied by the corresponding element of y=a(x1,g,...,Q), which implies that

Biyh(a,..‘,a) € K . By Lemma3.2, all the numerical coefficients of the equation (3.2) are in K .
Pushing further, we have the following:

Theorem 3.3 If a branch of an algebraic function a(x,,X,,..., X, ) takes values in O, for any
Xy Xg,-.. X, iN O, , then it is a polynomial with coefficients in K. .

Proof. Leta(x,, X,,..., X, ) be a branch of an algebraic function defined by

FOY XX X ) = Ay (X X X ) Y™+ A (X X X )Y 4 AL (X X0 % ) =0,
where A (X, X,,., X)) € K[X, X,,..., %] (i=0,1,...,n).Suppose that n>1.1f we substitute
any c,C,,...,c in K forx,X,,...,x.,then f(y|c,c,,...,c.) is reducible inK[y]; hence, by
Hilbert’s irreducibility Theorem 2.3, f(y|X,,X,,...,X,)is reducible,
which is a contradiction. Thus, N=1,i..,

FOY X0 % X) = A (X XKoo X ) Y + A (X, X, %, ) =0,
yielding
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A X %) F(% [ Xp0eee0 X )
Ay (X Xy %) =90 %)+ A (X [ %oy %)

where qr are polynomials in X whose coefficients are rational functions of x,,...,X, with

Y (X0 X0 X ) =

coefficients in K, such that degx1 I’<degXl A, . Thus, we can represent Y in the form
yo Q(x1|x2,...,xk)+Co(xz,...,xk)xlm"’l+C1(x2,...,xk)x1”‘°’2+---+Cm071(x2,...,xk)
L( X500 %) By (X0 % )X + By (Xpro X )X 4+ B (X0 %)

where Q(Xilxz,...,xk) is a polynomial in xwhose coefficients are polynomials in

, (33)

O, [%,-x J,and  L(X,..., % ) €0, [X,,%;,...,X ] is the least common multiple of the
denominators of coefficients in q(x1 | Xz,...,xk),and allC ’s and B s are the polynomials in
KXy Xg- .-, %, ]. Let
m, =max,.;., ,{deg, C;} (i=2.3....k).
Choose a system of elements ¢, , €O, (h=1,2,...,m, +1i=12,... k)with
o, #a,, (j#=hi=12,.k),

such that when we substitute in (3.3)
any one of the elements o,,,@, 5,..., &, .1 € Oy for x,

any one of the elements @ ;, & 511 O 1 € O, for x,,
neither the polynomial L(X,,...,X,)nor B, (X,,...,X,) vanishes. Since

V(X X )L (X% ) = QX [ X500 %, ) (3.4)

Co(Xar e X )X +C (X X )2 4+ C (X0 X, )

- L(X,,...,% ),
BO(XZ""’Xk)X1mO+Bl(XZ""’Xk)X1m°_1+"'+BmO(XZ,.,,,Xk) ( 2 k)

when we substitute the above assigned values of X,,..., X, into (3.4), the left hand side of (3.4) is
in O, forany x, €O, .Butwe can choose x, € O, such that the right hand side of (3.4) is not in

O, .Thus, C, (XZ,..., X, ) must vanish for the above assigned values of x,,...,x, forall
i=0,1,...,m,—1.ByLemma21, C (Xz,...,xk)EO (i=01...,m,-1), ie,

Y (X Xo oo X ) = We?{(xw..,xk)[xﬂ.

Proceeding in the same manner, we have
V(X X X ) € K (Xu Xa e X )Xo Loy V(X0 X0 X ) €K (X0 X0 Xy )X ]

Therefore, Y(X, X, X ) €K [ X1 Xy, X |-

In the proof of Theorem 3.3 the following result is implicit.
Theorem 3.4 If a branch of an algebraic function takes valuein K. for any x,,X,,...,X, in O,
then it is a rational function in x,, X, ..., X, with coefficients in K_.

We are now ready to state and prove our first main result.
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Theorem 3.5 Let neN. If f (X, X,,...,X,)is an algebraic function of x,X,,...,X, taking
values which are n" powers of elements in O, when we substitute for X, x,,..., X, by elements in
O, then

f(Xl’XZ""’Xk)=¢(X11X2""’Xk)n1
for some @(X,, X, ,..., %) € K[X, X,,..., X ]-

Proof. Since {/ f (X, X,,...,X,) isabranch of an algebraic function, and {/f (c,,c,,...,c,) €O,
for all ¢ €O, (i=12,...,k), by Theorem 3.3,8/f(x,X,,...,x]) is a polynomial in

X,y Xy, ..., X, With coefficients in’K_ .
For polynomials, we now prove the following:

Corollary 3.6 Let f (X, X,,..., %) € O, [X, X,,..., X Jand let ne N.If f(a,....,e ) isann”
power of an element in OKfor any a,,...,q, in OKthen f (X%, %o X ) = B(X, Xy, %, )" TOT
some ¢ € O, [X,X,,..., X ].

Proof. From Theorem 3.5 , we know that f (X, X,,..., X, ) = #(X,, X, .-
DX, Xy ey X ) €KX, Xy, X, ]. It remains to show that indeed
P(X, Xore e %) €O [X, X5, X ] Let

Ol( ) byl |k
[Eom wﬂ(l)xlx (3.5)

where o'(i), B(i)(= 0) are relatively prime integers in O, . We may assume that the

monomials appearing in the right-hand expression of (3.5) are written in ascending
lexicographical order, i.e.,

X )", forsome

B(X X X ) =

XJ X o)< X
if any of the following conditions hold: i, > j;;or i, = j, but i, > j,; or generally,
i, = jyseeeyi,y = J,,but i, > j, forsome £ <K.Let

=lcm, {B(i)}, g:=gcd, {a'(D)}, a(i) _T)

So that ged ; {ex(i)} =1. Thus,

Lnf(xl’XZ""’Xk)Zgn[zLﬂa((l))xl'x .. Lk] EOK[Xl’XZ""iXk]'

(3.6)

If L is nota unit, let 7 be its prime factor.
We claim that 7 divides all La(i)/ £(1).1f not, thenlet | =(I,,1,,...,1,) be the least

(lexicographically) index for which zOle(i)/ g(i)with i=<1but z+La(l)/B().
Observe then that in the expression on the right-hand side of (3.6) , the integer coefficient of
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n
(Xi'lxé2 "'X;k) is not divisible by 7,as it contains a single term (gLa/(1)/ £(1))" not divisible
by 7, which contradicts the fact that all coefficients on the left-hand side are divisible 77 . Thus,
7T must divide all coefficients in the right-hand expression, but this in turn implies then that L is

not the least common multiple of the denominators A(i). This contradiction shows that L must
be a unit, i.e., all B(i) are units.

Remark. There is another proof of Corollary 3.6 using Theorem 2.4 (Gauss's lemma) for the case
k =1. From Theorem 3.5 , we know that f (x) = ¢(x)", for some ¢(X) € K[x]. By Theorem 2.4,

#(x) € O, [X].
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