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Abstract

The concept of unitary convolution in the commutative ring of arithmetic functions, under the two
operations of addition and unitary convolution, is investigated. A generalized unitary Mobius
function is defined and its basic properties, which extend those corresponding classical ones are
derived. Of particular interest are certain generalized unitary Mobius inversion formula and some
characterizations of multiplicative functions.
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1. Introduction

An arithmetic function [1] is a complex-valued function defined on the set of positive integers.
The set of arithmetic functions, 4 , is a commutative ring under the usual addition defined by

(f +9)(n) = f(n)+g(n)
and the unitary convolution, LI , defined by

(fug)(n)=>f(n/d)g(d)=> g(n/d)f(d):

d|n dfin
whered || ndenotes the unitary divisor, i.e., those divisors d for which gcd (d,n/d) = 1. The
identity element under the unitary convolution is the function
1 ifn=1
I(n)= .
0 ifn>1
which is also the identity under the Dirichlet convolution, * , defined by

(f*g)(n)=2_f(d)g(n/d).

For fe Asuch that f (1) =0, its inverse under the unitary convolution exists and is denoted by

f 1. Notice that when n is squarefree, we have (f LU g)(n) = (f *g)(n).
Cohen [2] considered a unitary analogue of the Mobius function

A(n) = (-1, (1.1)
where @(n) is the number of distinct prime factors of n with »(1) = 0.Generalizing Cohen's
notion, we define a generalized unitary M bius function by
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0 =(a)”,
where o € C\ {0}and z, =1,so0 that zz = zz. Denote by M, the set of multiplicative functions,
viz.,
M ={f e AN{0}; f(mn)= f(m)f(n) whenever gcd(m,n)=1}.
Evidently, z is a multiplicative function, and it is easily checked that a unitary convolution of two

multiplicative functions is a multiplicative function.
The objectives in this work are
1) to collect basic properties associated with unitary convolution;
2) to prove the generalized unitaryMaobius inversion formula and to derive relations among
the generalized unitary Mobius function and multiplicative functions;
3) to derive some characterizations of multiplicative function.

2. Preliminaries

2.1 The work of Cohen in 1960 [2]
Cohen seemed to be the first person who seriously used the concept of unitary convolution to
solve arithmetical problems. First, he defined the unitary Euler's totient, @(n).Fora,be N with

b > 0, denote by (a,b). the greatest divisor of a which is a unitary divisor of b. When(a,b). =1
the integer a is said to be semiprime to b. The unitary Euler's totient is defined as the number of
positive integers in {1, 2,..., n}that are semiprimeto n, i.e.,

pn)=t{k e{L.2,....n}; (k,n). =1}.
Cohen introduced a trigonometric sum ¢*(m,n) for the case of unitary divisors, mimicking the
Ramanujan's sumc(m, n) in the ordinary case, by

c’(mn)= > e(mx,n)

(x,n).=1
where e(m,n) =exp(2zim/n).He proved that
“(m.d n ifnim
%ﬂ:c m, )_{0 if ntm.
Furthermore, he defined
p(n)=c"(0,n) and z(n)=c"(L,n).
Cohen gave the following interesting consequences:

Ya)=n,  Ya@=1m), cmn=Yad)n/d),

d||n dn dlin
@(n)=¢; U a(n), A(n) = (-1)"®
where £ (n) =n, and for f,g e A,the unitary Mdbius inversion holds, namely,

f()=2.9(d) «— g(n)=> a(d)f(n/d).

dfln diin
He also established a number of analytical estimates. If f (n)is defined by f (n) = (g L h)(n) for
g,he Aand if g(n) is bounded, then for real number x > 2, we have
2 »
> f(n)= %ZM+ 0(x? log? X).
o N

n<x
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2.2 The work of Cohen in 1961 [3]
Let £,1 e A denote functions satisfying

>, &)n(s) =1(n).

dé=n
(d,5)=1

Cohen proved

f(n)= > &d)g©) «— gm= 2 f@dn)

dé=n dé=n
(d,5)=1 (d,5)=1

as well as the generalized unitary inversion formula

f(n)= Z 9(8) «— 9= % Ad)f(s)
@9 @5

where k e N. Cohen applied the unitary convolution and the generalized unitary inversion formula
to treat some asymptotic problems involving the distribution of certain sets of integers.

2.3 The work of Cohen in 1964 [4]
A positive integer n is said to be k-free if it has no prime factor of multiplicity >k and k-full if it
has no prime factor of multiplicity < k. The set of k-full and k-free integers are denoted by Q, and

L, respectively. Their characteristic functions are denoted by g, (n) and |, (n), respectively. Cohen
defined the generalized Mobius function, 4, to be the multiplicative function such that
N~ -1, iflg<e <k
ﬂk(p):{o, if e > k
for any prime p and e e N. Cohen proved that for all k >1,

2ud)=1 () «— > u(d)g, (§j= 1(n)

dfn diln
and for f g e A, the following inversion formula holds

g(n)=2f(d>qk[§J — 10-Ya@u (5]

dfln diin
Further, Cohen defined ¢, (n) to be the number of integers m in a complete residue system mod n

which are semiprime to the maximal unitary divisor of n contained in Q, . He proved

AO-Yai (5] > Taea[F]-n
dlin dfin
and

ACE %i—ﬁ" (r:]);p(n) +0(x? log? x).

n<x

2.4 The work of Horadam [5]
Horadam defined generalized integers and ™ (¢, )as follows: suppose there is given a finite or

infinite sequence {p} of real numbers (generalized primes) such that 1< p, < p, <.... Form the set
{f} of all possible p-products; these numbers are called generalized integers. Let {En} be the set
of generalized integers. Define ™ (¢, ) to be the number of generalized integers contained in {En}

which are semiprimeto £, . Horadam proved:
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. Z ¢ (d)=n,forall n eN;
dé=t,,(d,6)=1

o if f(¢,), h(¢,)are multiplicative, then the unitary convolution of g(/ yand h(¢,) is
also multiplicative;

e aunitary inversion formula: if

G(£,)= 2, F(d),

do=r,
(d,8)21

then
F(,)= > u(d)G(5).

do=r,
(d,8)21

2.5 The work of Rao [6]
Rao (see also [2]) gave the following extension of Cohen'’s totient. For positive integers n, m, K,

let (n,mk); denote the largest unitary divisor of m* that divides nand is a k th power. Denote by

¢, (M) the number of integers N in a complete residue system mod m*such that (n,m*), =1.
Rao proved that
. _ _ (1)
gi(m) = > d*Gm 1) =, um) =m [ ]| 1~ |
dlim pin
wheregk(n) -~ nkand v, (m) denotes the highest power of the prime p that divides m.This result

implies at once that ¢, is a multiplicative function.
Let d(n)denote the number of unitary divisors of N, and let a,(n) denote the sum of thekth
power of the unitary divisors of n (see also [7]), i.e.,

d(n)=>Y1=2"" g, (n)=>d" =¢ LU(n).

d|In dfin
Rao also established the identities
G, (N) =Y @ (n/d)d(d), D o' (n/d)dy = @ (n/d,)d,, > &, (d)g (n/d)=n*G (n).

diin dyfIn dalin diln

2.6 The work of Rearick [8]
Let Pbe the setof all f e .4 such that f (1) is a positive real number. Rearick proved that

the groups {P,*},{M,*},{P,},{M,L} and {A,+}are isomorphic.

2.7 The work of Hansen and Swanson [9]
Hansen and Swanson defined the following concepts.
1. The greatest common unitary divisor (gcud) of positive integers
a, b, written as gcud (a,b) , is the integer d eNsuch that d ||a,d ||b,and if c||a,c||b,

then c|| d.
2. The least common unitary divisor (Icud) of positive integers a, b, written as lcud (a, b),
is the integer d defined by ¢ = a—b_
geud(a,b)

3. Any positive integers a,b are unitarily relatively prime if gcud (a,b)= 1.
4. A positive integer nis a unitary perfect number if the sum of all the unitary divisors of n
is 2n.
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2.8 The work of Johnson [10]
Johnson studied the multiplicative properties of s, (n), defined for f,g < A, by

scn)= > f(d)g(k/d).

dll(n,k)«

He proved that for f, g e A,
1 s, (ab)=s; (a)s, (b) whenever (a,k)=(b,m)=1;
2. s, (ab)=s,(a) whenever (b,m)=1;
3. s, (a)=s,(a)g(k)whenever (a, k) =1
4. if f,g e M, then s, (n)is multiplicative in k for each fixed n.

2.9 The work of Hsu [11]
Hsu extended the Mabius in version formula based on the prime factorization of integers. Let

n=np---pcand d= pil p;s ,with p,being distinct primes, x.and t being nonnegative
integers satisfying 0<t, < x.Replacing f (n)andg(d)in the Mobius inversion formula by
f((x)) = f(x,...,x)and g((t)) = g(t,...,t,), respectively. Hsu proved the following theorems:
Theorem 2.1 For f,g .A,we have

FnX) = Y g(tty)

0<t;<x;

if and only if

90 %) = D (=t X —t)m (.. t),

0<ti<x

where

t) :{(—1)‘1*'“”5 if all t; <1

00 if there is a t;>2.
Hsu also gave a Mobius inversion formula in vector form. Let (x)-(t)=(x,
(X) = (%, X)), () = (t,,...,t.) and (0) < (t) < (x),i.e, 0<t < xforall i.
Theorem 2.2 For any given (r) =(r,,...,r,) with r, N, we have

BN = X w5 (@)9((x) - (1)

(0)=(t)=<(x)

x,) with

if and only if

g(() = X (@) F()- ()
(0)<(t)<(x)
((t)) are defined by

S - S " - -1
o @-T1[ e -11(";" )

where 4 ((t))and 4}

2.10 The work of Hsu and Wang [12]
In 1998, Hsu and Wang stated that Theorem 2.2 is also true when each positive integer
r. (i=0,...,s)is replaced by a real number. They defined a generalized Mabius function by
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vp(n)
/ua(n) pin L 4 (n))( )

where o € C. Note that z = 4, 4, = 1,and g, is a multiplicative function.
It is not difficult to verify that M, * M=y for complex numbers ¢, (. They stated the

following generalized Mobius inversion formula.
Theorem 2.3 For f,g e A, a € C, we have

f(n) = §:g<dn@(—ﬂ —> gm)=§:f(dnaa[§)

din din
They also extended the generalized Mobius function by replacing the arguments with some
arithmetic functions. For « € A , define

(p)\ \ (n

pin

2.1)

Note that Hiy ™ 5 (N) = 4., 5, (N) for arithmetic functlons a, B Hg =1 and is a multiplicative
function. The Mébius inversion formula still holds when , and 4  are replaced by Heay and
Hi_oy» respectively. They also considered the Maobius function in two variables. For ¢ € A,z €C,

n
Hioy(n,2) = H[&J[a(p\)’“}i\)’r’( )J(_l)vp(m

p|n (Z(p)+ZVp (n)
This reduces to (2.1) when Z=0. Note that (Hay* 115 (N, 2) = 11,5, (N, 2) for arithmetic
functions «, gand 4, (n,z)is a multiplicative function. Theorem 2.3 is also true when 4 (n)is
replaced by Hiy(N,2) 5 ie, for f,ge A, we have
F()= 4, (11d,2)9(d) «— g(n)=> ., (/d,2)f(d).
din din
Moreover, Theorem 2.2 still holds when each positive integer r.is replaced by an arithmetic
function ¢, (i=1,...,s).
Theorem 2.4 If (a) = (e,..., o) With all ¢, e A then
FON= D (. 29(()-1)

@=(O=(0)
if and only if

90N = > u(®.F()- (),
@==(9)
where 4 ((t), z) is defined by

Hiy (1), 2) = H( e J[a‘ :Zti)(—l)". (2.2)

and 4 (1), 2) is taken from (2.2) with () being replaced by (-a) = (-«,...,—a,).

2.11 The work of Schinzel [13]
In 1998, Schinzelderived an explicit form of the unitary inverse of f € A, with f(1)=1, as

w(n) k
OEDINDY D f@) (>, =1

dy---dy=n
(d;,dj)=1,d;>1
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2.12 The work of Buschman [14]
In 2003, Buschman considered the unitary Maobius function by defining

i =pup--ug (keN),
%‘/—/
k factors

with 7z, =1,z ,=U,u, =pu, U g, U pu, (kfactors), and proved that
f=guu, «— g="~fup,

which is an extension of the unitary Mobius inversion formula. He also derived the identities
pUG =g, pUU=0, { UG, =¢,U0,.

3. Main Results

3.1 Generalized unitary Maobius inversion formula
In this section, we prove two forms of the generalized unitary Maobius inversion formula.
Lemma 3.1 For ¢, C,wehave 1, Lif, =1,,,.

Proof. When n =1, we have

> m@8, (5 |- 5080 -1-7.,0

di
In general, when the prime factorization of niisn = p? ... p®, we have

a, U, (n) =m, W, (p - p&) + 1, (P ) i, (pge - P )+ + 1, (pf -+~ p&) 11, (1)

=(-1° {;]aoﬂs +GJ a4 +(jasﬂo} =(-D(a+p) =x,.,(n).

Our first main theorem is:
Theorem 3.2 A) The set of all generalized unitary Mabius functions is an abelian group under the
unitary convolution with the identity element | = z .

B) (Generalized unitary Mobius inversion formula) Let f, g e A anda € C\ {0}. Then
_ (n
f(n)=> gz, (5) (3.1)

dlin

if and only if

g =3 f [g)@,(d). (32)

dln

ie, f=qguUu, «— g="FfUpn,.
Proof. If f =g U z ,then Lemma 3.1 shows that

f uﬁa:gl—l/'_l—a uﬁa :gl—lll’_l—nﬁ(l:gl_l I :g
Conversely, ifg = fLz, , then

guz, =fug, g, =fupm, ,=ful="f.
Let the prime factorization of nand its divisor d be

n:plxl... p:s’ d:pil pgs,

wherex eN, 0<t <x (i=1...,5),and p <p, <---< p are primes. Writing

() =0 %), (O = (0 8), (0 = (0) = 04 =100 % =),



KMITL Sci. Tech. J. Vol.17 No.1 Jan.-Jun. 2017

The generalized unitary Mobius inversion formula becomes
Theorem 3.3 For (a)=(a,,...,,) € (C\ {0})°, we have

() =2 9(O)F ., ()~ (1) (3.3)
)
if and only if
g((x)) =2 ()~ (O, (©), (3.4)
()

where (t), =(t,,...,t;) €{0,x ¥ and ﬁ(ﬂl)((x)—(t))=li[ai“’(pix'4')_ Equivalently,
i=1
F((x)) = (9 U 21,y )((x)) «—g((x)) = (f L F7_, )((X))-
To prove Theorem 3.3, we need the following lemma.
Lemma 3.4 For o € C\ {0}, xe Nand u {0, x}, we have

Z aw(pv—u)(_a)w(px—v) _ 1 if u=X
ve{0,x} 0 if u= O.

Proof. The result easily follows from

Z aw(pv’“)(_a)w(p*’”) —

ve{0,x}

a®) =1 ifu=x
{(—a)“(px)a‘”(po) +a®®) =0 if u=0.
We return now to the proof of Theorem 3.3.
I £((x)) = (9 L (%)), then

D)=L (@) = D FOG e X 1) Figy (b, t)

(t)y t{0,%}

= Z Z g(“l ~~~~~ Us)l_‘(a)(tl '''' ts)ﬁ(—a)(xi_ti_ul """ Xs_ts_us)

{0} {04}

= 2 9 UK Y P a) e Y @ e Y
u;{0,%} v {0, } vse{0,x}
=0(X,.. X))
by Lemma 3.4.The converse implication is proved by retreating the above steps.
Next, we verify two identities related to generalized unitary Mabius function.
Proposition 3.5 A. Let o, 8 C.If f € M, then
(B UM =]]L-af(p™)).
pin
B.For ¢« e C,y e Rand ne N, we have
(7, UM =TT —a) (&, (n):=n").
pin
Proof. A. For n=1, we have
(7, T Ua,)W =7, f 08,0 =1
Let 9=z, f L, sothatg e M .Let n=p?... p be its prime factorization. Clearly,

g(p™) =2 ﬁa(d)f(d)ﬁﬂ(%j=ﬁa(1)f(1)ﬁﬂ(Pf')+/7a(p?')f(Pf‘)ﬁﬂ(l)=—/5'—af(pf”),

djlp
and so

a(n) :]jg(p?):H(—ﬁ—af(pv"(")))-

pin
B. For n =1, we have
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(7, 0NN = 7,0, @ = 1.

Putting g =z, U = M, and evaluating at prime powers, we get

a(p) =2 ¢, )z, (%} ¢, O, (pM)+¢,(pM)E, )= —a+p/*,
dllpf

yielding
g =" -a).

pin

3.2 Multiplicative function and applications
In this section, characterizations of multiplicative functions using unitary products are derived. We
start with an auxiliary result.
Lemma 3.6 For neN,n>1, and « R, there are only two values of « (namely 0 and 1) for
which the expression (1-«)" —1—(—«a)" can vanish.
Proof. Putting
Fl@)=1-a)"-1-(-a)",
we see that F(0) =0 and

FO=0-1-(-D)" :{0 !f n !s odd
-2 if nis even.

The asserted result follows from the following claims.
Claim3.7 If ¢ <0, then F(a)>0.

Proof of Claim 3.7 If & <0, then
F(a) :1+[nJ(—a)+[n](—a)2 +.--+(”j(—a)” “1-(-a)" > 0.
1 2 n

Claim 3.8 For ¢ e R\ {0}, if F(a) =0, thenF(1/«) =0.
Proof of Claim 3.8 If F(a)=0, then

F(i):(l_ij _1—[—3j D=0,
o (24 o o
Claim 3.9 If o belongs to the open interval (0,1), then F(a) #0.

Proof of Claim 3.9 If o € (0,1), then
Fla)=1-a)"-1-(-a)"<(l-a)-1-(~a)" =-a—(-a)" <0,

becausen > 1.
We now present our characterizations of multiplicative functions.

Theorem 3.10 Let ¢ e R and f ¢ A.
1. ffeM,theng fuf=nmf.
2. I f@Q)#0,ae{0Band 7 fuf=z f,then f e M.
Proof. 1. If f e M, then
_ _ n _ _
(7, fuf)n) => 7, (d)f(d)f [5)2 f(n> m,(d)=f(na,, ().

dln dfin
2. For n=1, we have

(7t U =70,
using f (1) =0and « ¢{0,1}.For n= p{ p with distinct primes p,, p,, from

1, (pfpe) T (pftpy?) = (m,f U f)(ptps)
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we get
(L=a)’ f(pip) = F(p P57 )+ 22, (p) F (1) F(p37) + 2, (p) F (p3*) ()
+ H (PP F (P py).
Simplifying and using « ¢{0,1}, we deduce that f (pps2)= f(p®)f(ps2). Assume that

f(pr--pi)=f(pP)- f(p¥) (k=23...,5-15>3)
for distinct primes p,,..., p, - Let p,,..., p;be distinctanda,,...,a, € N. From

Eaf(prp2)= Y ﬁa(d)f(d)f(%j,

dllp---pis
expanding the first and the last terms on the right hand side, we arrive at

(1—a) f(pf - p2) =7, @ (P P2+, T (P2 p) @+ Y A& F(d)f [%]
d 131.,, sﬂs
d z{Hl.ppfi : ppas }
Using the induction hypothesis and simplifying, we get
(=) -1-(=a)")| f(p - p) = {(L-a)’ ~1-(=a))| f () F (p3).
Since o ¢{0,1}, Lemma 3.6.shows that f (p/--- p®) = f(p2)--- f (p2). Hence f is

multiplicative.
The conditions imposed in Theorem 3.10 are analyzed in the next theorem.
Theorem3.11Let f e 4,and o eC.

A. Assumethat f(1)=0,andthat 7 f L f=7 ,f
AL If ¢ 21, then f =0.
A2. If ¢ =1, then there are infinitely many f satisfying afuf=mf.
B. If f(1)=1, then mfuf=m,f.
Proof. Al.Evaluating at p*, aeN, p prime, we get
,.(p*) T (p*) =Y &, (d)f (d)F (p*/d),

diip*
which immediately implies f(p?)=0.Next, evaluating at n= p ... p* for distinct primes p, and

a, € N, we have

i f(prp®)= Y ﬁa(d)f(d)f(%],

dlpit--pée

which by induction shows that (1—¢)° f (pf --- p&) =0,and so f (p/*--- p>) =0.
A2. Letn, e N\ {1}, a € C\ {0}. Consider f e .4 defined by
a ifn=n,
f(n)= )
0 if n#n,.
Then f (1) =0.For ne N, whether n, is a unitary divisor of nor not, we find that

(zf U f)n) =Zﬁf(d)f(§j=0=ﬁof(ﬂ)-

djn
Since there are infinitely many such arithmetic functions f , the desired assertion follows.

B.If f(1)=1, then
pof=Uf=f=l1uf=Ifuf=pfuf.

10
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Our next application deals with the concept of discriminative products.Forg, he .4, a unitary
product k = g LI h is said to be discriminative if
k(n) = g(n)h()+g(L)h(n)
holds only when @(n) =1.
A unitary product k = g LI h is said to be semi-discriminative if
k(n) = g(n)h()+g(L)h(n)
holds only when @(n)=1 or 1.

Using these two concepts, we have the following characterizations of multiplicative functions.
Theorem 3.12 Let f € A .

1. If f e M, then f distributes over any unitary discriminative product, i.e.,
f(guh)=fgu fh
forall g,he A.
2. If f(1)=0and f distributes over some unitary discriminative product k , then f e M.
3. Iff(Q)=1and f distributes over some unitary semi-discriminative product k, then
feM.
Proof. 1. Assume that f € M. Thenforallg,he A4, ne N, we have

fguh)n) = f(n)Zg(d)h(gj{g(d)f(d)h(gj f G}(fg L fh)(n).

din dlin

2. Assume that f(1) # 0, k=g U his a unitary discriminative product, and fk = fg LJ fh. For
n =1, we have f (1) =1.Next, we show that

F(p - p) = F(p?)-~ F(p2) (3.5)
forse N, all distinct primes p ..., p,, anda,,...,a, € N. Clearly, (3.5) holds fors=1. Let
P, P, be distinct primes and a,,a, € N . Then

a4
fk(pipy2) = (fg U th)(pf py2)= Z fg(d)fh[pldpz J

dllpft p3?

Thus,
0={f(prp)—-F(PM)F(p)} D, g(d)h(%pzz)

dlipf p2
deft, ptp32}

={f(pp2*) - F(p*) F (2 )HK (P p2*) — (9(Mh(ps* p2*) + g(pr Py )h(D)}-

Since k is unitary discriminative, (3.5) holds fors =2 .LetS > 3, and assume that (3.5) holds for
all positive integers whose number of distinct prime factors is less than s. Let p,,..., p, be
distinct primes anda,,...,a, € N. Then

fk(pflpfs) =(fgu fh)(pflpsas): Z fg(d)fh(%j

dilpg---pg

S o) f(pr) S g(d)h[%]

d|lpf---pgs
defl, pt--p}

+ f(pf - p)a(pr - p)h@) + g@h(pg -+ pg) F (Pt -+~ pg*).

11
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Thus,

0={f(p®---pZ)—f(p2)--- F(pX)} D g(d)h[gj
dllpft---pge
d e{l,p pfluPp;"‘S }

= {f(p--p)— F(p)- F(p)}x

{(guh)(p - pe) = (g@h(p* -+~ p) + g(p* -+ p M)}

= {f(p - p)— f(p)- F (P )HK(p -+ ps*) = (@h(p -+ ps*) + g (i -+~ e )h(D)}-
Since K is discriminative, (3.5) holds fors € N . Hence, f is multiplicative.

The proof of Part 3 is similar to that of Part 2.
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