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Abstract 
 
The concept of unitary convolution in the commutative ring of arithmetic functions, under the two 
operations of addition and unitary convolution, is investigated. A generalized unitary Mӧbius 
function is defined and its basic properties, which extend those corresponding classical ones are 
derived. Of particular interest are certain generalized unitary Mӧbius inversion formula and some 
characterizations of multiplicative functions. 
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1. Introduction 
 
An arithmetic function [1] is a complex-valued function defined on the set of positive integers. 
The set of arithmetic functions, , is a commutative ring under the usual addition defined by  

( )( ) ( ) ( )f g n f n g n+ = +  
and the unitary convolution,   , defined by 

( ) ( )
|| ||

( )( ) / ( ) / ( )
d n d n

f g n f n d g d g n d f d= =∑ ∑ , 

where ||d n denotes the unitary divisor, i.e., those divisors d for which gcd (d,n/d) = 1. The 
identity element under the unitary convolution is the function 

1 if 1
( )

0 if 1,
n

I n
n
=

=  >
 

which is also the identity under the Dirichlet convolution, * , defined by  
( * )( ) ( ) ( / ).

d n
f g n f d g n d=∑

∣

 

For f∈ such that (1) 0f ≠ , its inverse under the unitary convolution exists and is denoted by 
1.f −  Notice that when n is squarefree, we have ( )( ) ( * )( )f g n f g n= . 

Cohen [2] considered a unitary analogue of the Mӧbius function 
( )( ) ( 1) ,nn ωµ = −  

where ( )nω is the number of distinct prime factors of n with (1) 0.ω = Generalizing Cohen's 
notion, we define a generalized unitary M bius function by 
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( )( ) ( ) ,nnα
ωµ α= −  

 
where {0}α ∈ and 0 ,Iµ = so that 1 .µ µ=  Denote by , the set of multiplicative functions, 
viz., 

{ }: {0}; ( ) ( ) ( ) whenever gcd( , ) 1 .M f A f mn f m f n m n= ∈ = =  

Evidently, αµ is a multiplicative function, and it is easily checked that a unitary convolution of two 
multiplicative functions is a multiplicative function. 
The objectives in this work are  

1) to collect basic properties associated with unitary convolution; 
2) to prove the generalized unitaryMӧbius inversion formula and to derive relations among 

the generalized unitary Mӧbius function and multiplicative functions; 
3) to derive some characterizations of multiplicative function. 

 
 

2. Preliminaries 
 
2.1 The work of Cohen in 1960 [2] 
Cohen seemed to be the first person who seriously used the concept of unitary convolution to 
solve arithmetical problems. First, he defined the unitary Euler's totient, ( ).nϕ For ,a b∈  with 

0, b > denote by *( , )a b  the greatest divisor of a which is a unitary divisor of b. When *( , 1)a b =  
the integer a is said to be semiprime to b. The unitary Euler's totient is defined as the number of 
positive integers in {1,2, , }n… that are semiprimeto n, i.e., 

{ }*( ) {1,2, , }; ( , ) 1 .n k n k nϕ = ∈ … =  

Cohen introduced a trigonometric sum *( , )c m n  for the case of unitary divisors, mimicking the 
Ramanujan's sum ( , )c m n in the ordinary case, by 

*

*

( , ) 1
( , ) ( , )

x n
c m n e mx n

=

= ∑  

where ( , ) exp(2 / ).e m n im nπ= He proved that  

*

||

if |
( , )

0 if .d n

n n m
c m d

n m


= 


∑ 
 

Furthermore, he defined  
*( ) (0, )n c nϕ =  and *( ) (1, ).n c nµ =  

Cohen gave the following interesting consequences:  
*

|| || ||
( ) , ( ) ( ), ( , ) ( )( / ),

d n d n d n
d n d I n c m n d n dϕ µ µ= = =∑ ∑ ∑  

( )
1( ) ( ), ( ) ( 1) nn n n ωϕ ζ µ µ= = −  

where
1( ) ,n nζ = and for , ,f g∈ the unitary Mӧbius inversion holds, namely, 

|| ||
( ) ( ) ( ) ( ) ( / ).

d n d n
f n g d g n d f n dµ←→= =∑ ∑  

He also established a number of analytical estimates.  If ( )f n is defined by ( ) ( )( )f n g h n=  for 
,g h∈ and if ( )g n is bounded, then for real number 2,x ≥ we have 

2
2 2

3
1

( ) ( )( ) ( log ).
2n x n

x g n nf n O x x
n
ϕ∞

=

= +∑ ∑
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2.2 The work of Cohen in 1961 [3] 
Let ,ξ η ∈ denote functions satisfying 

( , ) 1

( ) ( ) ( ).
d n
d

d I n
δ
δ

ξ η δ
=
=

=∑  

Cohen proved 

( , ) 1 ( , ) 1

( ) ( ) ( ) ( ) ( ) ( ),
d n d n
d d

f n d g g n f d
δ δ
δ δ

ξ δ η δ
= =
= =

←= =→∑ ∑  

as well as the generalized unitary inversion formula 

( , ) 1 ( , ) 1

( ) ( ) ( ) ( ) ( )
k kd n d n

d d

f n g g n d f
δ δ
δ δ

δ µ δ
= =
= =

= ←→ =∑ ∑  

where .k∈  Cohen applied the unitary convolution and the generalized unitary inversion formula 
to treat some asymptotic problems involving the distribution of certain sets of integers. 
 
2.3 The work of Cohen in 1964 [4] 
A positive integer n is said to be k-free if it has no prime factor of multiplicity k≥  and k-full if it 
has no prime factor of multiplicity .k<  The set of k-full and k-free integers are denoted by kQ  and

kL respectively. Their characteristic functions are denoted by ( )kq n and ( ),kl n respectively. Cohen 
defined the generalized Mӧbius function, *

kµ ,  to be the multiplicative function such that  

* 1, if 1
( )

0, if
e

k
e k

p
e k

µ
− <

= 





 

for any prime p and .e∈  Cohen proved that for all 1,k ≥  

* *

|| ||
( ) ( ) ( ) ( )k k k k

d n d n

nd l n d q I n
d

µ µ  = = 


→


←∑ ∑  

and for , ,f g∈  the following inversion formula holds 

*

|| ||
( ) ( ) ( ) ( ) .k k

d n d n

n ng n f d q f n g d
d d

µ←   = =   
  

→


∑ ∑  

Further, Cohen defined *( )k nϕ to be the number of integers m in a complete residue system mod n 
which are semiprime to the maximal unitary divisor of n contained in kQ . He proved 

* * *

|| ||
( ) ( ) ,k k k k

d n d n

n nn d d q n
d d

ϕ µ ϕ←→   = =   
   

∑ ∑  

and 
2

* 2 2
3

1

( ) ( )( ) ( log ).
0

k
k

n x n

n nxn O x x
n

µ ϕϕ
∞

=

= +∑ ∑


 

 
2.4 The work of Horadam [5] 
Horadam defined generalized integers and **( )nϕ 

as follows: suppose there is given a finite or 

infinite sequence { }p of real numbers (generalized primes) such that 
1 21 p p< < <… .  Form the set 

{ } of all possible p-products; these numbers are called generalized integers. Let { }n be the set 

of generalized integers. Define **( )nϕ 

to be the number of generalized integers contained in { }n

which are semiprimeto n . Horadam proved: 
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• **

,( , ) 1

( ) ,
nd d

d n
δ δ

ϕ
= =

=∑


for all ;n ∈  

• if ( ), ( )n nf h 
are multiplicative, then the unitary convolution of ( )ng  and ( )nh   is 

also multiplicative; 
• a unitary inversion formula: if  

( , ) 1

( ) ( ),
n

n
d
d

G F d
δ
δ
=
=

= ∑




 

then 

( , ) 1

( ) ( ) ( ).
n

n
d
d

F d G
δ
δ

µ δ
=
=

= ∑




 

 
2.5 The work of Rao [6] 
Rao (see also [2]) gave the following extension of Cohen's totient. For positive integers ,  ,  ,n m k
let *( , )k

kn m denote the largest unitary divisor of km that divides n and is a k th power. Denote by 
* ( )k mϕ the number of integers n  in a complete residue system mod km such that *( , ) 1.k

kn m =
Rao proved that 

*
( )

|||

1( ) ( / ) ( ) 1 ,
p

k k
k k k m

p nd m

m d m d m m
p νϕ µ ζ µ

 
= = = −  
∑ ∏  

where ( ) : k
k n nζ = and ( )p mν denotes the highest power of the prime p that divides .m This result 

implies at once that *
kϕ is a multiplicative function. 

Let ( )d n denote the number of unitary divisors of ,n and let ( )k nσ denote the sum of the k th 
power of the unitary divisors of n (see also [7]), i.e., 

( )

|| ||

( ) 1 2 , ( ) ( ).n k
k k

d n d n

d n n d U nω σ ζ= = = =∑ ∑   

Rao also established the identities 

1 2

* * * *
1 1 2 2

|| || || ||

( ) ( / ) ( ), ( / ) ( / ) , ( ) ( / ) ( ).k k
k k k s k k s

d n d n d n d n

n n d d d n d d n d d d n d n nσ ϕ ϕ ϕ σ ϕ σ+= = =∑ ∑ ∑ ∑  

 
2.6 The work of Rearick [8] 
Let  be the set of all f ∈ such that (1)f is a positive real number. Rearick proved that 
the groups { ,*},{ ,*},{ , },{ , }      and { , }+ are isomorphic. 
 
2.7 The work of Hansen and Swanson [9] 
Hansen and Swanson defined the following concepts. 

1. The greatest common unitary divisor (gcud) of positive integers  
,  a b , written as gcud ( , )a b  , is the integer d ∈ such that ,|| |, |d a d b and if ,|| |, |c a c b

then .||c d  
2. The least common unitary divisor (lcud) of positive integers ,  ,a b written as lcud ( , )a b , 

is the  integer d defined by .
gcud( , )

abd
a b

=  

3. Any positive integers ,a b  are unitarily relatively prime if gcud ( , )a b = 1. 
4. A positive integer n is a unitary perfect number if the sum of all the unitary divisors of n  

is 2n . 

4 
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2.8 The work of Johnson [10] 
Johnson studied the multiplicative properties of * ( ),ks n defined for , ,f g ∈ by 

*

*

||( , )

( ) ( ) ( / ).k
d n k

s n f d g k d= ∑  

He proved that for , ,f g ∈  

1. * * *( ) ( ) ( )mk m ks ab s a s b= whenever ( ) ( ), , 1;a k b m= =  

2. * *( ) ( )m ms ab s a=  whenever ( ), 1;b m =  

3. * *( ) ( ) ( )mk ms a s a g k= whenever ( ), 1 ;a k =  

4.  if ,f g ∈ , then * ( )ks n is multiplicative in k for each fixed .n  
 
2.9 The work of Hsu [11] 
Hsu extended the Mӧbius in version formula based on the prime factorization of integers. Let 

1
1

sxx
sn p p= 

and 1
1 ,stt

sd p p= 
with ip being distinct primes, ix and it  being nonnegative 

integers satisfying 0 .i it x≤ ≤ Replacing ( )f n and ( )g d in the Mӧbius inversion formula by 

1(( )) ( , , )sf x f x x= … and 1(( )) ( , , ),sg t g t t= … respectively. Hsu proved the following theorems: 
Theorem 2.1 For , ,f g ∈ we have 

1 1
0

( , , ) ( , , )
i i

s s
t x

f x x g t t
≤ ≤

… = …∑  

if and only if 
 

1 1 1 1 1
0

( , , ) ( , , ) ( , , ),
i i

s s s s
t x

g x x f x t x t t tµ
≤ ≤

… = − … − …∑  

where 
 

1

1 1
( 1) 1

( , , )
0 2.

st t
i

s
i

if all t
t t

if there is a t
µ

+ + − ≤
… = 

≥



 

Hsu also gave a Mӧbius inversion formula in vector form. Let 1( ) ( ) ( , , )sx t x x− ≡ … with 

1 1( ) ( , , ), ( ) ( , , )s sx x x t t t≡ … ≡ … and (0) ( ) ( ),t x≤ ≤ i.e., 0 i it x≤ ≤ for all .i  
Theorem 2.2 For any given 1( ) ( , , )sr r r≡ … with ,ir ∈ we have 

1
( )

(0) ( ) ( )

(( )) (( )) (( ) ( ))r
t x

f x t g x tµ−

≤ ≤

= −∑  

if and only if 
 

( )
(0) ( ) ( )

(( )) (( )) (( ) ( ))r
t x

g x t f x tµ
≤ ≤

= −∑  

where ( ) (( ))r tµ and 1
( ) (( ))r tµ− are defined by 

1
( ) ( )

1 1

1
(( )) ( 1) , (( )) .

1
i

s s
i i it

r r
i ii i

r t r
t t

t r
µ µ−

= =

+ − 
= − =  −

 
 
  

∏ ∏
 

 
2.10 The work of Hsu and Wang [12] 
In 1998, Hsu and Wang stated that Theorem 2.2 is also true when each positive integer 

( 0, , )ir i s= … is replaced by a real number. They defined a generalized Mӧbius function by 

5 
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( )

|
( ) ( 1)

( )
p n

pp n
n

n
ν

α

α
µ

ν
 

= −  
∏  

where .α ∈ Note that 1 0, ,Iµ µ µ= = and αµ is a multiplicative function. 

It is not difficult to verify that *α β α βµ µ µ +=  for complex numbers , .α β  They stated the 
following generalized Mӧbius inversion formula. 
Theorem 2.3 For , , ,f g α∈ ∈ we have 

| |
( ) ( ) ( ) ( ) .

d n d n

n nf n g d g n f d
d dα αµ µ−

   = ←→ =   
   

∑ ∑  

They also extended the generalized Mӧbius function by replacing the arguments with some 
arithmetic functions. For α ∈ , define 

( )
( )

|

( )
( ) ( 1) .

( )
pv n

pp n

p
n

v nα

α
µ

 
= −  
∏  

Note that ( ) ( ) ( )* ( ) ( )n nα β α βµ µ µ += for arithmetic functions (0), , Iα β µ = and is a multiplicative 

function. The Mӧbius inversion formula still holds when αµ and αµ− are replaced by ( )αµ  and 

( ) ,αµ −
respectively. They also considered the Mӧbius function in two variables. For , ,zα ∈ ∈  

( )
( )

|

( ) ( )( )( , ) ( 1) .
( )( ) ( )

pp v n

p n pp

p zv npn z
v np zv nα

ααµ
α

+  
= −    +   
∏  

This reduces to (2.1) when 0z = . Note that ( ) ( ) ( )( * )( , ) ( , )n z n zα β α βµ µ µ +=  for arithmetic 
functions ,α β and ( ) ( , )n zαµ is a multiplicative function. Theorem 2.3 is also true when ( )nαµ is 
replaced by ( ) ( , )n zαµ , i.e., for , ,f g∈ we have 

( ) ( )
| |

( ) ( / , ) ( ) ( ) ( / , ) ( ).
d n d n

f n n d z g d g n n d z f dα αµ µ −←= =→∑ ∑  

Moreover, Theorem 2.2 still holds when each positive integer ir is replaced by an arithmetic 
function ( 1, , ).i i sα = …  
Theorem 2.4 If 1( ) ( , , )sα α α= … with all iα ∈ then 

( )
(0) ( ) ( )

(( )) (( ), ) (( ) ( ))
t x

f x t z g x tαµ
≤ ≤

= −∑  

if and only if 
( )

(0) ( ) ( )
(( )) (( ), ) (( ) ( )),

t x
g x t z f x tαµ −

≤ ≤

= −∑  

where ( ) (( ), )t zαµ is defined by 

( )
1

(( ), ) ( 1) .i

s
i i ti

i ii i

zt
t z

tztα

ααµ
α=

+  
= −  +   
∏  

and ( ) (( ), )t zαµ −
is taken from (2.2) with ( )α being replaced by 1( ) ( , , ).sα α α− ≡ − … −  

 
2.11 The work of Schinzel [13] 
In 1998, Schinzelderived an explicit form of the unitary inverse of f ∈ , with (1) 1f = , as 

1

( )
1 1

1 1
( , ) 1, 1

( ) ( 1) ( ) ( 1), (1) 1.
k

i j i

n k
k

i
k d d n i

d d d

f n f d n f
ω

− −

= = =
= >

= − > =∑ ∑ ∏


 

                                                                            (2.2) 

                                                                                             (2.1) 
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2.12 The work of Buschman [14] 
In 2003, Buschman considered the unitary Mӧbius function by defining  

k factors

( ),k kµ µ µ µ= ∈ 



   

with 0 1 1 1 1, , kI Uµ µ µ µ µ µ− − − − −= = =    (k factors), and proved that 

,k kf g g fµ µ− ←→= =   
 
which is an extension of the unitary Mӧbius inversion formula. He also derived the identities 

, , .k k k m m kUµ σ ζ ϕ σ ζ σ ζ σ= = =     
 
 

3. Main Results 
 
3.1 Generalized unitary Mӧbius inversion formula 
In this section, we prove two forms of the generalized unitary Mӧbius inversion formula. 
Lemma 3.1 For ,α β ∈ , we have .α β α βµ µ µ +=  
Proof. When 1,n = we have 

||1

1( ) (1) (1) 1 (1).
d

d
dα β α β α βµ µ µ µ µ +

  = = = 
 

∑  

In general, when the prime factorization of n is 1
1

saa
sn p p= … , we have 

1 1 2 1
1 1 2 1( ) (1) ( ) ( ) ( ) ( ) ( 1)s s sa a aa a a a

s s sn p p p p p p pα β α β α β α βµ µ µ µ µ µ µ µ= + + +     

0 1 1 0( 1) ( 1) ( ) ( ).
0 1

s s s s s ss s s
n

s α βα β α β α β α β µ−
+

 
=

     
     
    

− + +


+ = − + = 
 



 

Our first main theorem is: 
Theorem 3.2 A) The set of all generalized unitary Mӧbius functions is an abelian group under the 
unitary convolution with the identity element 

0I µ= . 
B) (Generalized unitary Mӧbius inversion formula) Let ,f g∈ and {0}α ∈ . Then 

||
( ) ( )

d n

nf n g d
dαµ−

 =  
 

∑  

if and only if 

||
( ) ( ),

d n

ng n f d
d αµ

 =  
 

∑  

i.e., f g g fα αµ µ− ←→= =  . 

Proof. If f g αµ−=  , then Lemma 3.1 shows that 

.f g g g I gα α α α αµ µ µ µ− − += = = =      
Conversely, if g f αµ=  , then 

.g f f f I fα α α α αµ µ µ µ− − −= = = =      
Let the prime factorization of n and its divisor d be  

1 1
1 1, ,s sx tx t

s sn p p d p p= = 

 
where , 0 ( 1, , )i i ix t x i s∈ ≤ ≤ = …

, and 
1 2 sp p p< < <

are primes. Writing 

1 1 1 1( ) ( , , ), ( ) ( , , ), (( ) ( )) ( , , ),s s s sx x x t t t x t x t x t≡ … ≡ … − ≡ − … −  

                              (3.1) 

                                       (3.2) 
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The generalized unitary Mӧbius inversion formula becomes 
Theorem 3.3 For 1( ) ( , , ) ( {0})s

sα α α≡ … ∈  , we have 

( )
( )

(( )) (( )) (( ) ( ))
xt

f x g t x tαµ −= −∑  

if and only if 
( )

( )
(( )) (( ) ( )) (( )),

xt
g x f x t tαµ= −∑  

where 1( ) ( , , ) {0, }s
x s it t t x= … ∈ and  ( )

( )
1

(( ) ( )) .
x ti i
i

s
p

i
i

x t ω
αµ α

−

−
=

− =∏  Equivalently, 

( ) ( )(( )) ( )(( )) (( )) ( )(( )).f x g x g x f xα αµ µ −= ←→ =   
To prove Theorem 3.3, we need the following lemma. 
Lemma 3.4 For {0}, xα ∈ ∈  and {0, }u x∈ , we have 

( ) ( )

{0, }

1
( )

0 0.
v u x vp p

v x

if u x
if u

ω ωα α
− −

∈

=
− =  =

∑  

Proof. The result easily follows from 
0

0

( )
( ) ( )

( ) ( ) ( ){0, }

1
( )

( ) 0 0.

v u x v

x x

p
p p

p p pv x

if u x

if u

ω
ω ω

ω ω ω

α
α α

α α α

− −

∈

 = =− = 
− + = =

∑  

We return now to the proof of Theorem 3.3. 
If ( )(( )) ( )(( )),f x g xαµ −=  then 

( ) 1 1 ( ) 1
( ) {0, }

(( ) ( )) (( )) ( , , ) ( , , )
x i i

s s s
t t x

f x t t f x t x t t tα αµ µ
∈

− = − … − …∑ ∑  

 
1 ( ) 1 ( ) 1 1 1

{0, } {0, }
( , , ) ( , , ) ( , , )

i i i i i

s s s s s
t x u x t

g u u t t x t u x t uα αµ µ −
∈ ∈ −

= … … − − … − −∑ ∑  

 1 1 1 1
1 1

1 1

( ) ( )
1 1 1

{0, } {0, }
( , , ){ ( })

v u x v

i i

p p
s

u x v x
g u u ω ωα α

− −

∈ ∈

= … −∑ ∑ … ( ) ( )

{0, }
{ ( ) }s s

s s

s

v u x vs s

s

p p

v x
s s
ω ωα α

− −

∈

−∑  

 1( , , )sg x x= … , 
by Lemma 3.4.The converse implication is proved by retreating the above steps. 
Next, we verify two identities related to generalized unitary Mӧbius function. 
Proposition 3.5  A. Let ,α β ∈ . If f ∈, then   

( )

|

( )( ) ( ( )).p n

p n

f n f pν
α βµ µ β α= − −∏  

  B. For ,α γ∈ ∈ 
and n∈ , we have 

( )

|

( )( ) ( ) ( ( ) : ).p n

p n

n p n nγν γ
α γ γµ ζ α ζ= − =∏  

Proof. A. For 1n = , we have  
( )(1) (1) (1) 1.f fα β α βµ µ µ µ= =  

Let g fα βµ µ=  , so that g∈.Let 1
1

saa
sn p p= 

be its prime factorization. Clearly, 

||

( ) ( ) ( ) (1) (1) ( ) ( ) ( ) (1) ( ),
i

i i i i i

ai
i

a
a a a a ai
i i i i i

d p

pg p d f d f p p f p f p
dα β α β α βµ µ µ µ µ µ β α

 
= = + = − − 

 
∑  

and so 
( )

1 |

( ) ( ) ( ( )).pi

s
na

i
i p n

g n g p f pνβ α
=

= = − −∏ ∏  

B. For 1, n = we have 

                                (3.3) 

                               (3.4) 
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( )(1) (1) (1) 1.α γ α γµ ζ µ ζ= =  
Putting ,g α γµ ζ= ∈ and evaluating at prime powers, we get 

||

( ) ( ) (1) ( ) ( ) (1) ,
i

i i i i

ai
i

a
a a a ai
i i i i

d p

pg p d p p p
d

γ
γ α γ α γ αζ µ ζ µ ζ µ α

 
= = + = − + 

 
∑  

yielding 
( )

|

( ) ( ).p n

p n

g n pγν α= −∏  

 
3.2 Multiplicative function and applications 
In this section, characterizations of multiplicative functions using unitary products are derived. We 
start with an auxiliary result. 
Lemma 3.6 For , 1n n∈ >

, and α ∈ , there are only two values of α  (namely 0 and 1) for 
which the expression (1 ) 1 ( )n nα α− − − −  can vanish. 
Proof. Putting  

( ) : (1 ) 1 ( ) ,n nF α α α= − − − −  
we see that (0) 0F =  and 

0
(1) 0 1 ( 1)

2 .
n if n is odd

F
if n is even


= − − − = 

−
 

The asserted result follows from the following claims. 
Claim 3.7 If 0α < , then ( ) 0F α > . 
Proof of Claim 3.7 If 0α < , then 

2( ) 1 ( ) ( ) ( ) 1 ( ) 0.
1 2

n nn n n
F

n
α α α α α

     
     = + − + − + + − − − −
    

>




 

Claim 3.8 For {0}α ∈ , if ( ) 0F α = , then (1/ ) 0F α = . 
Proof of Claim 3.8 If ( ) 0F α = , then 

1 1 1 ( 1)1 1 ( ) 0.
n n n

nF F α
α α α α

−     = − − − − = =     
     

 

Claim 3.9 If α  belongs to the open interval (0,1),  then ( ) 0.F α ≠  
Proof of Claim 3.9 If (0,1),α ∈ then   

( ) (1 ) 1 ( ) (1 ) 1 ( ) ( ) 0,n n n nF α α α α α α α= − − − − < − − − − = − − − <  
because 1.n >  
We now present our characterizations of multiplicative functions. 
Theorem 3.10 Let α ∈  and .f ∈  

1.  If f ∈ , then 
1 .f f fα αµ µ −=  

2.  If (1) 0, {0,1}f α≠ ∉ and 
1f f fα αµ µ −= , then .f ∈  

Proof. 1. If f ∈ , then 

1
|| ||

( )( ) ( ) ( ) ( ) ( ) ( ) ( ). 
d n d n

nf f n d f d f f n d f n n
dα α α αµ µ µ µ −

 = = = 
 

∑ ∑  

2. For 1n= , we have 

1( )(1) (1) (1),f f fα αµ µ −=  
using (1) 0f ≠ and {0,1}.α ∉ For 1 2

1 2
a an p p= with distinct primes

1 2,p p , from  
1 2 1 2 1 2

1 1 2 1 2 1 2( ) ( ) ( )( )a a a a a ap p f p p f f p pα αµ µ− =   

9 
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we get 
1 2 1 2 1 1 2 2 2 12

1 2 1 2 1 1 2 2 2 1(1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )a a a a a a a a a af p p f p p p f p f p p f p f pα αα µ µ− = + +  
1 2 1 2

1 2 1 2( ) ( ).a a a ap p f p pαµ+  
Simplifying and using {0,1}α ∉ , we deduce that 1 2 1 2

1 2 1 2( ) ( ) ( )a a a af p p f p f p= . Assume that 
1 1

1 1( ) ( ) ( ) ( 2,3, , 1; 3)k ka aa a
k kf p p f p f p k s s= = … − ≥ 

 
for distinct primes 1, , kp p… . Let 1, , sp p… be distinct and 1, , sa a… ∈ . From 

1
1

1
1

1
1 1

||

( ) ( ) ( ) ,
s

s

a as
s

aa
aa s
s

d p p

p pf p p d f d f
dα αµ µ−

 
=  

 
∑






 

expanding the first and the last terms on the right hand side, we arrive at 
1

1 1 1

1
1

1
1

1
1 1 1

||
{1, }

(1 ) ( ) (1) ( ) ( ) (1) ( ) .
s

s s s

a as
s

a as
s

aa
a a aa a as s
s s s

d p p
d p p

p pf p p f f p p f p p f f d f
dα α αα µ µ µ

∉

 
− = + +  

 
∑






  

 
Using the induction hypothesis and simplifying, we get 

{ } { }1 1
1 1(1 ) 1 ( ) ) ( ) (1 ) 1 ( ) ) ( ) ( ).s sa aa as s s s

s sf p p f p f pα α α α− − − − = − − − − 

 

Since {0,1}α ∉ , Lemma 3.6.shows that 1 1
1 1( ) ( ) ( )s sa aa a

s sf p p f p f p= 

. Hence f is 
multiplicative. 
The conditions imposed in Theorem 3.10 are analyzed in the next theorem. 
Theorem 3.11 Let f ∈ , and  α ∈ .  
A. Assume that (1) 0f = , and that 

1f f fα αµ µ −=  
A1. If 1,α ≠ then 0.f ≡  
A2. If 1,α = then there are infinitely many f satisfying  

1 .f f fα αµ µ −=  
B. If (1) 1f = , then  

0 1 .f f fµ µ−=  

Proof. A1.Evaluating at , ,ap a p∈  prime, we get 

( )1
||

( ) ( ) ( ) ( ) / ,
a

a a a

d p

p f p d f d f p dα αµ µ− = ∑  

which immediately implies ( ) 0.af p = Next, evaluating at 1
1

saa
sn p p= 

for distinct primes
ip  and 

,ia ∈ we have 
1

1

1
1

1
1 1

||

( ) ( ) ( ) ,
s

s

a as
s

aa
aa s
s

d p p

p pf p p d f d f
dα αµ µ−

 
=  

 
∑






 

which by induction shows that 1
1(1 ) ( ) 0,saas

sf p pα− =

and so 1
1( ) 0.saa

sf p p =

 
A2. Let 0 {1},n ∈ {0}.a∈ Consider f ∈ defined by 

0

0

( )
0 .
a if n n

f n
if n n

=
=  ≠

 

Then (1) 0.f = For ,n∈ whether 0n  is a unitary divisor of n or not, we find that 

0
||

( )( ) ( ) ( ). 0
d n

nf f n f d f f n
d

µ µ µ = = = 
 

∑  

Since there are infinitely many such arithmetic functions ,f the desired assertion follows. 
            B. If (1) 1f = , then 

1 0 .f Uf f I f If f f fµ µ− = = = = =    
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Our next application deals with the concept of discriminative products.For g , h∈ , a unitary 
product k g h=   is said to be  discriminative if 

( ) ( ) ( ) ( ) ( )  1 1k n g n h g h n= +  
holds only when ( ) 1nω = . 
A unitary product k g h=   is said to be semi-discriminative if 

( ) ( ) ( ) ( ) ( )  1 1k n g n h g h n= +  
holds only when ( ) 1nω =  or 1. 
Using these two concepts, we have the following characterizations of multiplicative functions. 
Theorem 3.12 Let f ∈. 

1. If f ∈ , then f  distributes over any unitary discriminative product, i.e., 
( )f g h fg fh=   

for all , .g h∈  
2. If (1) 0f ≠ and f distributes over some unitary discriminative product k , then f ∈ . 
3. If (1) 1f = and f distributes over some unitary semi-discriminative product k , then 

f ∈ . 
Proof. 1. Assume that f ∈ . Then for all , ,g h n∈ ∈ , we have 

|| ||
( )( ) ( ) ( ) ( ) ( ) ( )( . )

d n d n

n n nf g h n f n g d h g d f d h f fg fh n
d d d

     = = =     
     

∑ ∑ 
 

2. Assume that (1) 0,f k g h≠ =  is a unitary discriminative product, and fk fg fh=  . For
1n = , we have (1) 1f = .Next, we show that  

1 1
1 1( ) ( ) ( )s sa aa a

s sf p p f p f p= 

 
for s∈ , all distinct primes 1, , sp p… , and 1, , sa a… ∈ . Clearly, (3.5) holds for 1s = . Let

1 2,p p , be distinct primes and 1 2,a a ∈ . Then 
1 2

1 2 1 2

1 2
1 2

1 2
1 2 1 2

||

( ) ( )( ) ( ) .
a a

a a
a a a a

d p p

p pfk p p fg fh p p f g d fh
d

 
= =  

 
∑  

Thus, 
1 2

1 2 1 2

1 2
1 2

1 2
1 2

1 2
1 2 1 2

||
{1, }

0 { ( ) ( ) ( )} ( )
a a

a a

a a
a a a a

d p p
d p p

p pf p p f p f p g d h
d

∉

 
= −  

 
∑  

1 2 1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2 1 2{ ( ) ( ) ( )}{ ( ) ( (1) ( ) ( ) (1))}.a a a a a a a a a af p p f p f p k p p g h p p g p p h= − − +  

Since k is unitary discriminative, (3.5) holds for 2s = .Let 3s ≥ , and assume that (3.5) holds for 
all positive integers whose number of distinct prime factors is less than s. Let 1, , sp p…  be 
distinct primes and 1, , sa a… ∈ . Then 

1
1 1

1
1

1
1 1

||

( ) ( )( ) ( ) 
s

s s

a as
s

aa
a aa a s
s s

d p p

p pfk p p fg fh p p f g d fh
d

 
= =  

 
∑




   

 1
1

1
1

1
1

1
1

||
{1, }

( ) ( ) ( )
s

s

a as
s

a as
s

aa
aa s
s

d p p
d p p

p pf p f p g d h
d

∉

 
=  

 
∑








 

 1 1 1 1
1 1 1 1( ) ( ) (1) (1) ( ) ( ).s s s sa a a aa a a a

s s s sf p p g p p h g h p p f p p+ +   

 

                      (3.5) 
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Thus, 
1

1 1

1
1

1
1

1
1 1

||
{1, }

0 { ( ) ( ) ( )} ( )
s

s s

a as
s

a as
s

aa
a aa a s
s s

d p p
d p p

p pf p p f p f p g d h
d

∉

 
= −  

 
∑






 

 

1 1
1 1{ ( ) ( ) ( )}s sa aa a

s sf p p f p f p= − × 

 
1 1 1

1 1 1{( )( ) ( (1) ( ) ( ) (1))}s s sa a aa a a
s s sg h p p g h p p g p p h− +    

1 1 1 1 1
1 1 1 1 1{ ( ) ( ) ( )}{ ( ) ( (1) ( ) ( ) (1))}.s s s s sa a a a aa a a a a

s s s s sf p p f p f p k p p g h p p g p p h= − − +    

 

Since k is discriminative, (3.5) holds for s∈ . Hence, f is multiplicative. 
The proof of Part 3 is similar to that of Part 2. 
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