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Abstract 
 
This article reviews the structure theorems of the cut locus for very familiar surfaces of revolution. 
Some properties of the cut locus of a point of a Riemannian manifold are also discussed. 
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1. Definition of a cut point and the cut locus 
 
Let : [0, ]a Mγ →  denote a minimal geodesic segment emanating from a point p on a complete 
connected Riemannian manifold M. The end point γ  (a) is called a cut point of p along the 
minimal geodesic segment γ  if any geodesic extension : [0, ]b Mγ → , where b > a, of γ  is not 
minimal anymore. 
 
Definition 1.1 The cut locus pC  of a point p is the set of all cut points of p along minimal 
geodesic segments emanating from p. 
 It is very difficult to determine the structure of the cut locus of a point in a Riemannian 
manifold. The cut locus for a smooth surface is not a graph anymore, although it was proved by 
Myers in [1] and [2] that the cut locus of a point in a compact real analytic surface is a finite 
graph. In fact, Gluck and Singer [3] proved that there exists a 2-sphere of revolution admitting a 
cut locus with infinitely many branches. Their result implies that one cannot improve the 
following Theorem 1.3 without any additional assumption. 
 
Theorem 1.2 [3] There exists a 2-sphere of revolution with positive Gaussian curvature such that 
the cut locus of a point admits an infinitely many branches. 
 Hebda proved in [4] that the distance function ρ to the cut locus of a point (in a complete 
2-dimensional Riemannian manifold) is absolutely continuous where ρ is finite. Hence, for any 
pair of cut points of a point p can be connected by a rectifiable curve in pC  if the pair is in the 
same connected component. 
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Theorem 1.3 [4] The cut locus of a point of a complete 2-dimensional (smooth) Riemannian 
manifold is a local tree, and the distance function to the cut locus is absolutely continuous where ρ 
is finite. In particular, the cut locus has a natural interior metric. 
 
Remark 1.4 A topological space T is called a tree if for any two points p, q in T can be joined by 
a unique continuous curve. A topological space X is called a local tree if for any point x X∈  and 
any neighborhood V of x there exists a neighborhood U V⊂  of x which is a tree. 
 
Remark 1.5 Hartman [5] studied detail differentiable structures of the cut locus of a simply closed 
smooth curve in a complete Riemannian manifold homeomorphic to Euclidean plane. His work 
was generalized to a simply closed curve in a 2-dimensional Riemannian manifold [6-8]. 
 The cut locus of a point in a smooth Reimannian manifold cannot be a fractal set, i.e., the 
Hausdorff dimension is an integer see [9]. 

 
 

2. A surface of revolution homeomorphic toEuclidean plane 
 
Definition 2.1 A complete Riemannian manifold ( , )M g  homeomorphic to Euclidean plane is 
called a surface of revolution if the manifold admits a point p, with φ=pC , such that the 
Riemannian metric g is expressed as 
 

2 2 2( )g dr m r dθ= +  
 
by making use of geodesic polar coordinates (r, θ) around p. The point p is called the vertex of the 
manifold. 
 It is known that a complete Riemannian manifold M homeomorphic to Euclidean plane is 
a surface of revolution with vertex p if and only if for each t > 0 the Gaussian curvature G is 
constant on 

pS  (t) := {q ∈ M |d(p, q) = t}. 

 
Definition 2.2 A complete Riemannian manifold homeomorphic to Euclidean plane is called a 
von Mangoldt surface of revolution if the manifold admits a point p such that for any pair of 
points x, y with d(p, x) ≥ d(p, y), G(y) ≥G(x) holds. Here G denotes the Gaussian curvature of M. 
 
Remark 2.3 A von Mangoldt surface of revolution is actually a surface of revolution, and a 
surface of revolution with vertex p is a von Mangoldt surface of revolution if and only if the 
Gaussian curvature is decreasing along each meridian, which means a geodesic emanating from 
the vertex p. 
 Typical examples of a von Mangoldt surface of revolution are paraboloids and 2-sheeted 
hyperboloids. Elerath [10] determined the structure of the cut locus for special classical surfaces of 
revolution. 

Theorem 2.4 Let M(f) denote a surface of revolution defined by ),22( yxfz +=  where 
f : R → (0,∞) denotes a smooth even function. If the Gaussian curvature is decreasing along each 
meridian, then for each point q of M (f), the cut locus qC  of q is empty or a subset of the meridian 
opposite to q. 
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Remark 2.5 The Sturm comparison theorem is a key tool in the proof of Theorem 2.4. Typical 
examples of a von Mangoldt surface are paraboloids 2 2( ( ))z a x y= +  and a connected component 

of 2-sheeted hyperboloids 2 2( 1)z a x y= + +   

Theorem 2.6 Let 2 2 2( , ( ) )M dr m r dθ+  be a von Mangoldt surface of revolution with vertex p. 
Then the cut locus of a point q in M is either empty or a subset of the meridian opposite to q. More precisely, 
either φ=qC  or there exists a positive number t0 satisfying }(q)t0,r|),{( θπθθ +=≥= rpC  
 
Definition 2.7 A point q of a surface of revolution 2 2( , )M dr dθ+  homeomorphic to Euclidean 

plane is called a pole if ex
qp : 

qT  M → M is injective (or equivalently φ=qC . 

 It is trivial that the vertex p of a surface of revolution is a pole. It is known that the set of 
poles of a surface of revolution forms a closed ball centered at the vertex and furthermore, we 
obtain 
 
Theorem 2.8 Let 2 2( , )M dr dθ+  denote a surface of revolution with vertex p. Then the set of 
poles on M equals a closed ball centered at p and M admits a non-trivial pole if and only if  

lim →∞ ( )rinf m r  is non-zero and 2

1

( )m r
∞

−∫  dr is finite. 

Example 2.9 For a paraboloid of revolution, 2

1

lim ( ) ( )
r

m r m r dr
∞

−

→∞
= = ∞∫  Thus the vertex is 

a unique pole. 
 

Example 2.10 For a 2-sheeted hyperboloid of revolution, lim ( )
r

m r
→∞

= ∞  and 2

1

( )m r dr
∞

−∫  is finite. 

Hence any point sufficiently close to the vertex is a pole. 
 
 

3. A surface of revolution homeomorphic to a 2-sphere 
 
Definition 3.1 A Riemannian manifold (M, g) homeomorphic to a 2-sphere is called a 2-sphere of 
revolution if M admits a point p with a single cut point q such that the Riemannian metric g is 
expressed as 2 2 2( )g dr m r dθ= +  on M \ {p, q} by using geodesic polar coordinates (r, θ) around 
p. The point p and it’s unique cut point is called a pair of poles of the 2-sphere. 
 
Theorem 3.2 Let 2 2 2( , ( ) )M dr m r dθ+  denote a 2-sphere of revolution with a pair of poles p; q 
satisfying the following two properties. 
 (3.1) M is symmetric with respect to the reflection fixing the equator r = 1/2•d (p, q). 
 (3.2) The Gaussian curvature of M is decreasing along a meridian from the point p to the 
point on the equator. 
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 Then the cut locus of a point x ∈ M \ {p, q}, with θ(x) = 0 is either a subarc of the open 
half opposite meridian 1θ − (π) to x or a single point on the open half opposite meridian. Moreover, 
if the cut locus of x is a single point, then the Gaussian curvature of M is constant. 
 
Remark 3.3 A meridian of M means a periodic geodesic passing through p and q. For example, 

1 1(0) ( ) { , }p qθ θ π− −∪ ∪  is a meridian. 
 
 A typical 2-sphere of revolution satisfying (1.1) and (1.2) is an ellipsoid de-fined by 
 

2 2 2

2 2 1, (0 )x y z a b
a b
+

+ = < <   

 
Theorem 3.4 Let 2 2 2( , ( ) )M dr m r dθ+  denote a 2-sphere of revolution with a pair of poles p, q 
satisfying (1.1) such that 
 
 (3.3) the Gaussian curvature of M is increasing along a meridian from the point p to the 
point on the equator. 
 
 Then, the cut locus of a point x ∈ M \ {p, q} is either a single point or a subarc of the 
antipodal parallel ( , ) ( )r d p q r x= −  to x. Moreover, if the cut locus of x is a single point, then the 
Gaussian curvature of M is constant. 
 A typical example of a 2-sphere of revolution satisfying (3.1) and (3.3) is an ellipsoid 
defined by 
 

2 2 2

2 2 1, (0 )x y z a b
a b
+

+ = < <  

 
 The structure of the cut locus of a general ellipsoid, i.e., a surface defined by 

2 2 2 2 2 2/ / / 1,x a y b z c+ + =  where 0 < a < b < c, has been determined by Itoh-Kiyohara [11]. 
The cut locus of a generic point of the ellipsoid is an arc. In [12] and [13], this result was 
generalized to a Liouville surface and Liouville manifolds. 
 
Open Problem Let 2 2 2( , ( ) )M dr m r dθ+  denote a 2-sphere of revolution with a pair of poles p, 
q. Suppose that a point x ∈ M \ {p, q} is a pole, i.e., xC  is a single point. Then, is any point y ∈ M 
with d (p, y) ≤ d(p, x) a pole?  
 
Remark 3.5 This would be true if M satisfies (3.1), and m is strictly increasing on (0, m(x)). The 
first claim of Theorem 2.8 is a non-compact version of this problem. From Theorem 3.4, it follows 
that the cut locus of a point on the equator r = 1/2 • d(p, q) is a subset of the equator. This theorem 
was generalized to a wider class of 2-spheres of revolution by Bonnard-Caillau-Sinclair –Tanaka [1]. 
 
Theorem 3.6 Let 2 2 2( , ( ) )M dr m r dθ+  denote a 2-sphere of revolution satisfying (3.1). Suppose 
that the cut locus of a point on the equator r = 1/2 •d(p, q) is a subset of the equator. Then, the cut  
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locus of a point x ∈ M \{p, q} is either a subarc of the antipodal parallel )(),( xrqpdr −=  to x or a 
single point on the antipodal parallel. 
 
Remark 3.7 Theorems 3.4 and 3.6 were generalized for a class of cylinders of revolution by P. 
Chitsakul [14], and [15] respectively. 
Example 3.8 There exists a family { }Mλ λ of 2-spheres of revolution satisfying both properties 
in Theorem 3.6, but the Gaussian curvature is not mono-tonic along the meridian. By using 

geodesic polar coordinates (r, θ) around a point p of the unit sphere 
2

S (1) we give a family of 
Riemannian metrics 

2 2 2: ( )g dr m r dλ λ θ= + , where ( 0)λ ≥  is a parameter, on the unit sphere. Here 

2: 1sin / 1 coskm r rλ λ= + + . Then  )2)(2),1(2(: θλ drmrdrSkM +=  
satisfies both properties in Theorem 3.6, but the Gaussian curvature is not monotonic along a 
meridian if λ > 2. 

 
 

4. A surface of revolution homeomorphic to a 2-torus 
 
Let M be a standard torus in 3-dimensional Euclidean space defined by 
 

2 2 2 2 2( ) ( 0)x y R z r R r+ − + = > > . 
 

The surface M is given by rotating the (x, z)-plane curve 2 2 2{( ,0, ) ( )}x z x R z r− + =   
around the z-axis. 
 This surface has the following two properties. (4.4) It is symmetric with respect to the (x, 
y)-plane, i.e., it has a reflective symmetry with respect to the plane. 
(4.5) The Gaussian curvature is increasing from the point ( R r−  , 0, 0) to the point (R + r, 0, 0) 
along the meridian defined by y = 0. 
 The structure of the cut locus for this torus is topologically complicated (see Figure 1). 
If we state it roughly, 
 
Theorem 4.1 A cut point of a point p = (x0 , 0, z0 ), x0 > 0, on the torus is a point on the meridian  
{(x, (x,0, z) ∈ M |x < 0} opposite to p, a point on the antipodal parallel {(x, y, z) ∈ M | z = -z0  }, or 
a point on a (piecewise C1 ) Jordan curve which intersects the meridian opposite to p at a single 
point and is freely homotopic to each parallel. 
 
Remark 4.2 The structure of the cut locus is determined for a class of 2-torus of revolution which 
contains all standard tori in Euclidean space [16]. More precisely, let 1 1 2 2 2( , ( ) )S S dt m t dθ× +  

denote a torus with warped product Riemannian metric 2 2 2( )dt m t dθ+ , where 2dt  and 2dθ  
denote the Riemannian metric of a circle with length 2a and 2b respectively and m denotes a 
positive smooth warping function on R satisfying the following two properties: 
 (4.4 ( )) ( ) 2( ) m t m t m t a− = = +  for any real number t. 

 (4.5) The Gaussian curvature 
"

( )m t
m

−  is increasing on [0, ]a .  
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Figure 1. The structure of the cut locus 
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