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Abstract 
 
Natural convection flow in a square enclosure filled with a fluid-saturated porous medium is 
investigated in this paper. The left side wall of the cavity is heated while the right side wall is 
partially cooled. The cooled portion is located adjacent to the top wall. The remaining walls are 
adiabatic. The governing equations are solved by using FlexPDE 6.14 Student Version which is 
based on finite element method. The different parameters in the present study are Darcy number 
(10-5 ≤ Da ≤ 10-3), Grashof number (103 ≤ Gr ≤ 105), Prandtl number (0.70 ≤ Pr ≤ 10) and 
Reynolds number (10 ≤ Pr ≤ 100). The results are illustrated in the terms of isotherms, streamlines 
and heatlines. It is found that the strength of fluid motion and the magnitudes of streamlines 
increase and temperature distribution decrease as Darcy number and Grashof number increase. In 
addition, a single circulation cell in clockwise direction is formed in the enclosure. The 
magnitudes of heatlines become larger at higher Darcy numbers, while the increasing of Grashof 
number has no effect for the magnitudes of heatlines. 
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1. Introduction 
 
Natural convection heat transfer in close cavities filled with a fluid-saturated porous medium has 
received a great deal of attention. This is due to a large number of applications, for example, oil 
extraction, fluid flow in geothermal reservoirs, separation processes in chemical industries, 
efficient drying process, dispersion of chemical contaminants through water saturated soil, crude 
production and solidification of casting etc. 

Investigations of natural convection in an enclosure have been carried out by several 
investigators. Nawaf et al. [1] studied the steady natural convection in a porous square cavity with 
the non-Darcy model. The left vertical wall of the cavity is heated to a constant temperature, while 
the right wall is cooled to a constant temperature. Both the horizontal walls are adiabatic. The 
natural convection in an open-ended square cavity packed with porous medium has been presented 
by Haghshenas et al. [2]. The results obtained are values of Rayleigh number and porosity have 
considerable influence on heat transfer. Basak et al. [3] considered simulation of mixed convection 
in a square cavity filled with a porous medium with various wall thermal boundary conditions.  
The steady natural convection flow in a porous square cavity has been reported by Sathiyamoorthy 
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et al. [4]. The boundary conditions are on the bottom wall is uniformly heated, left  vertical wall is 
linearly heated and the right vertical wall is heated linearly or cooled while top wall is well 
insulated. Mahapatra et al. [5] introduced the influence of thermal radiation and internal heat 
generation on natural convection flow in a lid-driven square cavity filled with Darcy-Forchheimer 
porous medium. They observed that the temperature distribution decreases with the increasing in 
the value of Rayleigh number and the effect of increasing the thermal radiation parameter is to 
enhance the vertical velocity. Sompong and Witayangkurn [6] also investigated the natural 
convection in a porous square enclosure having two wavy vertical walls. 

Studies on partially cooled cavities filled with a porous media are quite limited. Natural 
convection heat transfer in a partially cooled and inclined rectangular enclosure filled with 
saturated porous medium has been presented by Oztop [7]. The results obtained are heat transfer is 
increased with the increasing of Rayleigh number and dominant parameter on heat transfer and 
fluid flow as well as aspect ratio. Refaee et al. [8] studied numerical simulations of laminar natural 
convection in partially cooled tilted cavities which the tilt angle of the cavity is varied from 0° to 
90°. The diffusion and convection heat transport for natural convection in a differentially heated 
square cavity has been analyzed by Mobedi et al. [9]. Furthermore, Varol et al. [10] performed the 
natural convection in a right-angle enclosure filled with a porous medium and which is partially 
cooled from the inclined wall. 

This paper is the study of two-dimensional natural convection in a porous square 
enclosure with partially cooled from the side wall of the cavity. The cooled portion is located 
adjacent to the top wall. The objective of the present paper is to investigate the flow field, 
temperature distribution and heat flow in the enclosure. Main attention is focused on the effects of 
Darcy number and Grashof number. This study yields consistent performance over a wide range of 
parameters, Darcy number 5 3( 10 10 ),Da    Grashof number 3 5( 10 10 ),Gr   Prandtl 
number ( 0.7 10)Pr =  and Reynolds number ( 1 100).Re    

 
 

2. Notation and Phisical Domain 
 
Da     Darcy number ,U V  U and V components of    

g        acceleration due to gravity, -2ms             dimensionless velocity 

K       permeability, 2m   ,x y    distance along x and y coordinates        

L        length of the square cavity, m   ,X Y   dimensionless distance along X  
p        pressure, Pa              and Y coordinates 
P       dimensionless pressure     Greek symbols            
Pr      Prandtl number                         thermal diffusivity, 2 -1m s  
Ra      Rayleigh number           volume expansion coefficient , 

-1K  
Re      Reynolds number             penalty parameter 
 Gr     Grashof number             dimensionless temperature  
T        temperature, K          kinematic viscosity, 

-1ms  

hT      temperature of the left heated wall, K         density, 
-3kg m  

cT      temperature of the partially        streamfunction 
           cooled wall, K         heatfunction 

,u v   x and y components of velocity           



KMITL Sci. Tech. J. Vol. 12 No. 2 Jul. - Dec. 2012 
 

182 
 

The physical domain is shown in Figure 1. It consists of the coordinate system of two-
dimensional square cavity filled with a fluid-saturated porous medium. The left vertical wall is 
heated with a constant temperature Th, the right vertical wall is partially cooled with a constant 
temperature Tc, where Th > Tc and the partially cooled is placed adjacent to the top wall. The other 
walls are insulated. Length of the square cavity is L and length of the cooled portion on the right 
vertical wall is kept constant at L/2. 
 
                                            Y                       
                                                      

                                          
                                              L/2 

                                                                                                 Tc 
 
                                            Th 

 
 
                                              
 
 

                              L                              X                 
 

Figure 1 Physical domain with coordinates 
 
 

3. Mathematical Formulation 
 
All the physical properties are assumed to be constant except the density in buoyancy term. 
Change in density due to temperature variation is calculated using Boussinesq approximation. 
Another important assumption is that the local thermal equilibrium (LTE) is valid. The governing 
equations for two-dimensional natural convection flow in a porous square enclosure using 
conversation of mass, momentum and energy can be written as 

                                       0,u u
x y
 

 
 

                                                                                             (1) 

                                      

2 2

2 2
1   ,u u p u uu v u

x y x Kx y



     

                                                       
(2) 

                                      
 

2 2

2 2
1 ,c

v v p v vu v v g T T
x y y Kx y


 


     

              
                     (3) 

                                      
2 2

2 2   .T T T Tu v
x y x y


    

        
                                                               (4) 

The boundary conditions are: 
                                       ,0 , 0, , 0,u x u x L u y u L y     

                                       ,0 , 0, , 0,v x v x L v y v L y     

                      
          

   , 0  = ,  = 0,T Tx x L
y y

 
 

 0, ,hT y T  

porous medium 
 

                     cooled wall 
                                     
                  g 

 
heated wall 
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                                 ,  = 0T L y
x




 when 0 ,
2
Ly   ,  = TcT L y  when .

2
L y L             (5)        

The above governing equations are transformed to dimensionless form by using the following 
change of variables: 

2
0 0 0

,      ,      ,       ,      ,       = ,c

h c

v p
U U

T Tx y uX Y U V P
L L T T U




    


   

                 

  3

2 2
0,       ,      ,      .h cg T T L LKPr Da Gr Re

L
U

 





   
 

The governing equations (1)-(4) reduce to the following non-dimensional form 

                                       
0,U V

X Y
 

 
 

                                                                                            (6) 

                                         

2 2

2 2
1 1 ,U U P U UU V U

X Y X Re ReDaX Y

     
                                      

(7) 

                                       

2 2

2 2 2
1 ,1V V P V V GrU V V

X Y Y Re ReDaX Y Re


     
             

                 (8) 

                                       

2 2

2 2
1 . U V

X Y RePr X Y
       
        

                                                      (9) 

In order to solve the equations (7)-(8) by eliminating the pressure, we use the penalty finite 
element method with a penalty parameter [11] such that 

                                                                 
.U VP

X Y


       
                                                    (10) 

Typical values of  that yield consistent solutions are 710 . Substituting (10) into (7) and (8) are 
reduced to 

                     

2 2

2 2
1γ  ,1 U U U V U UU V U

X Y X X Y Re ReDaX Y

                          
                         (11) 

                     

2 2

2 2 2
1 1 .V V U V V V GrU V V

X Y Y X Y Re ReDaX Y Re
 

                           
            (12) 

The transformed boundary conditions are: 

                                       ,0 ,1 0, 1, 0,U X U X U Y U Y     

                                       ,0 ,1 0, 1, 0,V X V X V Y V Y     

                                
   ,0  = ,1  = 0,X X

Y Y
  
 

 0, 1,Y    

                                 1,  = 0Y
X



when 10 ,
2

Y   1,  = 0Y when 1 1.
2

Y                         (13) 

The governing equations ((9), (11) and (12)) are solved by using FlexPDE 6.14 Student Version 
which is based on finite element method. 

The streamfunction   is used to visualize the convective fluid flow in the enclosure. 

The dimensionless streamfunction is defined as
 

  U
Y





and V
X


 


. Thus, the equation (6) is 

changed to (14)
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2 2

2 2 .U V
Y XX Y

    
  

  
                                                        (14) 

The no-slip condition is valid at all boundaries as there is no cross flow. Hence, the boundaries 
condition for streamfunction is 0.   
 The heatfunction   is used to visualize the convective heat flow in the enclosure. The 

dimensionless heatfunction is defined as   U
Y X




 
 

 
 and   V

X Y



 

  
 

. Thus, the 

equation (6) is changed to (15) 

                                                  
   

2 2

2 2 ,U V
Y XX Y

 
   

  
 



                                     (15) 

with the boundary conditions: 

                                                  
 = 1

X

  for left  heated wall, 

                                                  
 = 0

X



 for cooled portion right wall, 

                                                           = 0 for adiabatic walls.                                                       (16) 
 
 

4. Results and Discussion 
 
The computational results for the problem of natural convection in a porous square enclosure with 
partially cooled right vertical wall are presented in this section. The cooled portion is located 
adjacent to the top wall. The procedure mentioned previously is coded into FlexPDE 6.14 Student 
Version which is based on finite element method. The results are carried out for different values of 
Darcynumber 5 3(10 10 ),Da   Grashofnumber 3 5(10 10 ),Gr  Prandtlnumber (0.7 10)Pr  a
nd Reynolds number (1 100).Re  Effects of Darcy number ( )Da and Grashof number ( )Gr are 
considered. The flow, temperature and heat fields within the enclosure are shown in terms of 
streamlines isotherms and heatlines. 
 
4.1 Effect of Darcy number 
Figures 2–4 illustrate the isotherms, streamlines and heatlines inside a partially cooled square 
cavity filled with a porous medium. Three different Da are choosen as 

5 4
,  10 10  and 310 . The 

values of , Gr Pr and Re are fixed at 510 , 0.7 and 1,  respectively. 
 
 
 
 
 
 
 
 
 
 

(a)                  (b)        (c) 
Figure 2 Isotherms with 510 ,Gr  0.7,Pr = 1Re   for (a) 510Da   (b) 410Da   and 
(c) 310Da  . 
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It is observed that isotherms are smooth. At low Darcy number ( 510Da  ), isotherms 
are almost parallel to the side walls. The isotherm moves downward to the bottom wall 
for 0.40   (Figure 2(b)). As Da  is increased to 310 , values of isotherms with 

0.30 0.90   move toward to the left side wall [Figure 2(c)]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                 (b)                                               (c) 
 
Figure 3 Streamlines with 510 ,Gr  0.7,Pr = 1Re   for (a) 510Da   (b) 410Da   and 
(c) 310Da  . 
 

It is noted that a single circulation cell of streamlines is formed in clockwise rotating 
direction for all values of Da . The flow of streamlines is weak as seen from the maximum 
absolute value of streamfunction is 0.060 (Figure 3(a)). As Da  is increased to 410 , the flow 
characteristic is similar to the case of 510Da   but the intensity of fluid flow is stronger. The 
flow circulation cell is found to be changed with the main vortex expands in size. The maximum 
absolute value of streamfunction is 4.00 [Figure 3(c)]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                               (b)                                               (c) 
 
Figure 4 Heatlines with 510 ,Gr  0.7,Pr = 1Re  for (a) 510Da   (b) 410Da   and 
(c) 310Da  . 
 

The heatlines are smooth and these heatlines disperse near the right vertical wall (Figure 
4(a)). As Da  is increased to 410 , the main heat flow rotates in clockwise direction with the 
maximum absolute value of heatfunction is 0.25. In addition the dense heatlines appear near 
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heated wall. The less dense heatlines are also observed near heated wall compared to the case of 
410Da   and the strength of heatlines increases for 

310Da   (Figure 4(c)). 
 
4.2 Effect of Grashof number 
Isotherms, streamlines and heatlines inside a partially cooled square enclosure filled with a porous 
medium are plotted in Figsures 5–7. Three different Gr are choosen as 

310 , 410 and 510 . The 
values of , Da Pr and Re are fixed at 310 , 10 and 10,  respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 

                       (a)                                              (b)                                               (c) 
 
Figure 5 Isotherms with 310 ,Da  10,Pr = 10Re  for (a) 310Gr   (b) 

410Gr   and (c) 
510 .Gr   

 
It may be noted that isotherms are smooth. The isotherms are almost parallel to the side 

walls (Figure 5(a)). As Gr  is increased to 410 , isotherms move toward the heated wall 
with 0.30 0.90   . Furthermore, isotherms with 0.30   are almost parallel to the horizontal 
walls (Figure 5(c)). 
 
 
 
 
 
 
 
 
 
 
 
 
 

                        (a)                                                  (b)                                               (c) 
 
Figure 6 Streamlines with 310 ,Da  10,Pr = 10Re  for (a) 310Gr   (b) 

410Gr   and (c) 
510 .Gr   
The convection streamfunction takes negative values due to the clockwise rotation of 

convective fluid flow (Figures 6(a)-6(c)). Weak streamlines circulation cell with the maximum 
absolute value of streamfunction is 0.0045 for 

310Gr  . Single flow circulation cell is changed 
with the main vortex expands in size (Figure 6(b)). As Gr  is increased to 510 ,  the flow 
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circulation cell elongates in the enclosure and the intensity of fluid motion is stronger with 
0.12

max
   (Fig. 6(c)). 
 
 
 
 
 
 
 
 
 
 
 
 
 

                          (a)                                                  (b)                                               (c) 
 
Figure 7 Heatlines with 310 ,Da  10,Pr = 10Re  for (a) 310Gr   (b) 

410Gr   and (c) 
510 .Gr   

 
 At low Grashof number ( 310Gr  ), the heatlines are smooth and these heatlines disperse 
near the heated side wall (Figure 7(a)). Moreover, the heatlines are shifted toward to the heated 
side wall as Gr  are increased to 410 and 510  (Figures 7(b)-7(c)). The magnitudes of heatlines no 
change for all values of Gr . 
 
 

5. Conclusions 
 
This study investigates the natural convection flow in a porous square enclosure with partially 
cooled. The right vertical wall is partially cooled while the left vertical wall is heated and the 
remaining walls are adiabatic. The governing equations are solved by using a software package 
FlexPDE 6.14 Student Version. The main parameters of interest are Darcy number 

5 3(10 10 )Da   , Grashof number 
3 5(10 10 ),Gr  Prandtl number (0.7 10)Pr  and 

Reynolds number (1 100).Re  The effects of parameters such as Darcy number and Grashof 
number are examined. 

From the study results, the temperature distribution decrease as values of Da  and 
Gr increase. With both of these parameters, a single circulation cell occurred in clockwise rotating 
direction. In addition, the magnitudes of streamlines and heatlines become larger with high Da . In 
the case of increasing Gr , the main vortex of circulation cell expands in size and the strength of 
buoyant convection flow is enhanced. Furthermore, the magnitudes of heatlines no change with 
increasing of value of Gr . 
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