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Abstract 
 
In this work, we study a problem of asymptotically stabilizing of a switched system, which 
consists of second-order linear time invariant subsystems. The subsystems used in this work have 
complex eigenvalues and two out of three subsystems cannot be stabilized. We then find a third 
subsystem and a new switching law that makes overall system asymptotically stabilizable. We 
propose a new sufficient condition on eigenvalues of the 3rd subsystem and a switching law that 
allows asymptotically stabilizable the overall switched system. A numerical example has been 
shown to guarantee the effectiveness of the proposed condition. 
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1. Introduction 
 
A switched system is a particular kind of hybrid systems. It consists of several subsystems and a 
switching law, which determine the active subsystem at each time instant. In recent years switched 
system is a subject of interest in many fields of research. Many switched systems have been 
successfully applied in real-world processes such as in chemical processes, electrical circuits, 
computer-controller systems, intelligent-control systems and so on. 
Most of the works on switched systems are based on Lyapunov or multiple Lyapunov functions 
which can be done by using Linear Matrix Inequality (LMI) approach. A switched system can be 
unstable even if all of its subsystems are stable, or a switched system can be stable even if none of 
its subsystems  is stable; the example can be found in [1-3]. 
Xu and Antsaklis [4] proposed a method that selected an active subsystem to minimize the 
distance from the current state to the origin

2
x . The authors proposed a selection criteria based on 

the angle of subsystem vector field and the geometric properties of 2R . A subsequent study [5] 
used the result of region separation to stabilize switched systems by a static output feedback. 
Zhang and colleagues [6] considered a problem on asymptotic stabilization of second-order linear 
time-invariant (LTI) autonomous switched systems that consist of two subsystems with unstable 
foci. The authors derived the necessary and sufficient condition for the origin to be asymptotically 
stabilizable. The method is to find the "most stabilizing" switching law without the use of 
Lyapunov or multiple Lyapunov functions. The authors studied the locus in which two 
subsystems’s vector fields are parallel. 
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In this paper, we consider the asymptotically stabilization problem of second-order LTI 
autonomous switched system that consists of three subsystems. We study in which two out of 
subsystems can not be stabilized. We find the third subsystem and derive a new switching law to 
make the overall system asymptotically stabilizable. 

The rest of the paper is organized as follow. In section 2, we present some lemmas and 
theorems which will be used in the next section. In section 3, we derive a switching law that 
suffices to make the overall system asymptotically stabilizable. A numerical example is given in 
this section.  Finally in section 4, we summarize our study. 

 
 

2. Materials and Methods 
 
Consider the linear time-invariant (LTI) system 

    0)0(),()( xxtAxtx  .                                                    (1) 
It is well known that the solution of (1) is 

0)( xetx At  for 0t  

where Txxx ),( 21 and 22RA . The trajectory of the solution can be drawn on 2R plane. 
According to [5], we can consider the case when 















A
, where j   with 0 and 

0 are the complex eigenvalues of A . Since for a nonsingular general 22 matrices, the 
matrices could be transformed into the matrix of eigenvalue form. For the detail see [1]. 
 
Lemma 2.1 For the LTI autonomous system )()( tAxtx   with focus, where A









 

 , the 

solution with 0)0( 0  xx has the following properties: 

- if  < 0 and   > 0, then the solution 0)( xetx At  is a logarithmic spiral that 
converges to the origin clockwise, 

- if  < 0 and  < 0, then the solution 0)( xetx At  is a logarithmic spiral that 
converges to the origin counterclockwise, 

- if  > 0 and  > 0, then the solution 0)( xetx At  is a logarithmic spiral that 
diverges to the infinity clockwise, 

- if  < 0 and  > 0, then the solution 0)( xetx At  is a logarithmic spiral that 
diverges to the infinity clockwise. 

See the details in [5]. In 2005, Liguo Zhang, Yangzhou Chen and Pingyuan Cui [7] studied the 
second-order linear time-invariant (LTI) autonomous switched system is described by 

)()( )( txAtx t  

    ),0[:)(t {1, 2}                                                         (2) 

where 2Rx and )(t is the switching law indicating active subsystem at each instant.  The 
necessary and sufficient condition is deserved by the following theorem. 
 
Theorem 2.1 [7] The autonomous switched system (2) that consists of  two subsystem with 
unstable focus equilibrium is asymptotically stabilizable if and only if 0D , and 1 , where 
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)1(44 2
2

2
121

2   RRD , )/1( EER  , 111 /   , 222 /   . 
For the switching law, see [7]. 

 
 

3. Results and Discussion 
 
In this section, we study the case in which the two subsystems have unstable foci and cannot be 
stabilized. To stabilize the overall system, we introduce a third subsystem which is a stable system 
that has two complex eigenvalues with negative real parts. This subsystem will be used to stabilize 
the overall system according to concept illustrated in Figure 1. 

 
 

Figure 1 The idea of the concept 
 
According to figure 1, given the line v and v , the plane is divided into four regions. We are 
looking for the line *v  that makes the system asymptotically stabilizable. Without loss of 
generality, we let the point ip  lying on the line v . At this point, the switched system will use 
subsystem 1. 
 The trajectory will traverse region 1 in the clockwise direction until it intersects the 
line v . At this point, the switched system will switch to subsystem 2. 
 Then, we let the trajectory traverse region 2 in the clockwise direction until it intersect 
the *v line, where the switched system switches to subsystem 3. The trajectory will then traverse 
region 3 until it intersect the v line again. 
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 We let the point at which the trajectory intersect v line again be 1ip . From ip  to 1ip , 
The trajectory has traversed the total angle of . The overall switched system which consists of 
three subsystems is asymptotically stabilizable if 1ip < ipc  where 10  c . 
In this work, we consider a switched system 

)()( )( txAtx t  

    ),0[:)(t {1, 2, 3}                                                    (3) 

where 2Rx and )(t is a switching law indicating active subsystem at each instant. 

Let iii j  be the eigenvalues of iA , respectively. 0i (for 3,2,1i ), ( 0i , i 1, 

2,  ,0i  3i ). 
 According the figure 1, the switching law would be: switching to subsystem 1 whenever 
the system trajectory enters the region 1. Switching to subsystem 2 whenever the system trajectory 
enters the region 2. And switching to subsystem 3 whenever the system trajectory enters the 
region 3. 
 
Lemma 3.1 A switched system which consists of three subsystems is asymptotically stabilizable if 

ii p
c

p 1
1   where .1c  

Proof. ,12 pcp   

23 pcp  .1
2 pc  

By Mathematics Induction, we obtain 
.1

1 pcp n
n

  
As n , we obtain 

1
1limlim pcp n

nnn


  .0  
The trajectory of system converges to the origin. Thus, the switched system is asymptotically 
stabilizable. 
 
Definition 3.1 [8] An nn  matrix A is said to be diagonalizable if there exists a nonsingular 
matrix P and a diagonal matrix D such that 

.1 DPAP   

We say that P diagonalizes A . 
 

Lemma 3.2 For the system (1) with 










11

11
1

/



E
E

A  and complex eigenvalues j11    

with 01  and 01  , the solution is  

0
1)( xetx tA  For 0t  

where












 


ttE

t
E

tee ttA





cossin

sin1cos1 . 
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Proof. We want to find a nonsingular matrix P such that DPPA 1
1  where 














11

11

0
0



j

j
D . Let 











11

11
1

/



E
E

A with the eigenvalues 

1 j11   and 2 j11   . It is easy to see that  TjEv /11   and 

 TjEv /12  are the eigenvectors, corresponding to the eigenvalues 1 and 2 , respectively. 

Thus we have 









jjE
E

P
/

/11
and .

2/12/
2/111








 


jE
jE

P  

Since DPAP 1 , then we have .1 APDP   
It follows that 

.
/
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/
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E
E
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jjE
E

 

Therefore, 

tAe 1 = 1
)(

)(
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e
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Since, the solution of the system is  

0)( xetx At  

and if ,
0
1

0 







x  we have .

sin
cos

)(
1

11 









tE
t

etx t


  Thus the proof is completed. 

In the next theorem, we will derive the switching law of switched system which have three 
subsystems.  That is the main result of our study. 
 
Theorem 3.2 The autonomous switched system (3) consisting of three subsystems is 
asymptotical-ly stabilizable if 

cE ln)(sin)(cosln)()(
1

22
1

2

2

212

1

11

3

323 



 










. 

1 is the angle between v and v line, 2 is the angle between v and *v line and 3 is the angle 

between *v and v line.   321  and 1c . 
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Proof. By using the transformation and rotation matrix, the switched system which has three 
subsystems is described by 

1
1QQA 








 11

11 /



E
E

, 











22

221
2 


QQA , 











33

33
3 


A  

For a general 22 nonsingular matrices, the matrices could be transformed into the eigenvalue 
form. So we let 3A is the form as above for ease in the analysis. 

Let ))(),(( tt  be the solution of the switched system in polar coordinate with initial condition 
1)0(  and .0)0(   

The system will use subsystem 1 at which the trajectory intersect the v , thus 0t and 1tt  . 
By Lemma 3.2, the system obeys the equation 













)sin(

)cos(
)(

1

1
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1

tE
t

etx t




   

At 1tt  , we define 111 t  ; i.e. 111 / t , thus we have 

  111 /
1

etx  







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
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


E
 

Therefore, 

     1
22

1
2/

11 sincos111   Eet   
 

After instant 1t , the system will use the subsystem 2 at which the trajectory intersect *v line, thus 

12 tt  . The system obeys the equation 
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The solution at 2tt  is 
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After instant 2t , the system will use subsystem 3 at which the trajectory intersect v line. 

Thus 23 tt  . The system obeys the equation 
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At 3t we define 2333   t , thus 
3

32
3 

 
t . 

The solution at 3tt  is 
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By Lemma 3.1, the system is asymptotically stabilized if 

c
t 1)( 33  . 

This is equivalent to the following 
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Therefore, 

cE ln)(sin)(cosln)()(
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22
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where   321 and 1c .   
In the next section, we present an example to show the effectiveness of the result in 

Theorem 3.2. 
 
Example 1 Consider a switched system that consists of three subsystems where 













310
21

1A  , 










32

131
2A . 

The subsystem’s state matrices can be transformed into 












14
/41

1
'

E
E

A , 










25
52

2
'A , 15.0E  

From the Theorem 2.1 [7], the switched systems that consists of subsystem 1 and subsystem 2 can 
not be stabilized when 0D and 1 . For subsystem 1 and subsystem 2, we have 

7945.10D , 3457.2 . 
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From our study, when the switched system has two subsystems consisting of unstable foci 
trajectories can not be stabilized whenever 1 . We will be looking for the condition of 
subsystem 3 that makes the overall system asymptotically stabilizable. 
By the Theorem 3.2 

cE ln)(sin)(cosln)()(
1

22
1

2

2

212

1

11

3

323 



 










 

where   321 and 1c . 

We let 640.01  , 027.22  , 027.2640.03   , 
4
1

1

1 



, 
5
2

2

2 



, 15.0E , 

and 2c . 
Then we have  

05.0
3

3 



. 

Therefore, we have a matrix of subsystem 3 that corresponds with the above condition  














510
105

3A  where j1053  are the eigenvalues. 

The Figure 2 shows the trajectory of the system with initial condition Tx )5,10(0  . 
 

 
 

Figure 2 Trajectory of example 1 
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4. Conclusions 

 
In this work, we study a problem of asymptotically stabilizing a switched system which consists of 
three second-order linear time invariant (LTI) subsystem. The subsystem used in this work have 
complex eigenvalues where two subsystem have positive real part and one subsystem has negative 
real part. From the previous with two unstable foci subsystems cannot be stabilized by a switching 
law [7]. Therefore, we propose a sufficient condition to stabilize the switched system by finding 
another subsystem along with a new switching law to guarantee overall switched system to be 
asymptotically stabilizable. 
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