
KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011

25

Scheduling Independent Tasks on Grid Computing Systems by
Differential Evolution

Amid Khatibi Bardsiri1 and Marjan Kuchaki Rafsanjani2*

 1Bardsir Branch, Islamic Azad UniversityKerman, Iran

2*Department of Computer Science,Shahid Bahonar,University of Kerman,Kerman, Iran

Abstract

Grid Computing aims to allow unified access to data, computing power, sensors and other
resources through a single virtual laboratory. In this paper, we present Differential Evolution
algorithm based on schedulers for efficiently allocating jobs to resources in a grid computing
system. Scheduling is a key problem in emergent computational systems, such as Grid and P2P, in
order to benefit from the large computing capacity of such systems. The general problem of
optimally mapping tasks to machines in a heterogeneous computing suite has been shown to be
NP-complete. Experimental results show that our algorithm improves the performance of static
instances compared to the results of other algorithms reported in the literature.

Keywords: Grid computing, Heuristics, Differential Evolution, Makespan

1. Introduction

The emerging paradigm of grid computing and the construction of computational grids [1] are
making the development of large scale applications possible from optimization and other fields.
The development or adaptation of applications for grid environments is being challenged by the
need of scheduling a large number of jobs to resources efficiently. Moreover, the computing
resources may vary in regard to their objectives, scope and structure as well as to their resource
management policies such as access and cost. Grid computing and distributed computing, dealing
with large scale and complex computing problems, are one of the hot topics in the computer
science and research. Mixed-machine heterogeneous computing (HC) environments utilize a
distributed suite of different machines, interconnected with computer network, to perform
different computationally intensive applications that have diverse requirements [2]. Miscellaneous
resources should be orchestrated to perform a number of tasks in parallel or to solve complex tasks
divided to variety of independent subtasks [3]. Indeed, the grid environment is dynamic and, also
the number of resources to manage and the number of jobs to be scheduled are usually very large
making thus the problem a complex large scale optimization problem. Task scheduling is mapping

*Corresponding author: E-mail: kuchaki@mail.uk.ac.ir

KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011

26

a set of tasks to a set of resources to efficiently exploit the capabilities of such resources. It has
been shown, that an optimal mapping of computational tasks to available machines in an HC suite
is a NP-complete problem [4] and hence, it is a subject to various heuristic and meta-heuristic
algorithms. The heuristics applied to the task scheduling problem include Min-min heuristic, Max-
min heuristic, longest job to fastest resource- shortest job to fastest resource (LJFR-SJFR)
heuristic, Sufferage heuristic, Work queue heuristic and others [5-7]. Different criteria can be used
for evaluating the efficiency of scheduling algorithms; the most important of them is makespan.
Makespan is the time when grid computing system finishes the latest task. The objectives of
scheduling algorithm are increasing the system throughput measure, reducing task completion
time, better resource utilization rate, and balancing the load well [8-10]. In this study, we present
the implementation of DE algorithm for job scheduling on computational grids that optimizes the
makespan. The heuristic approaches have been tested using the benchmark model of Braun et al.
[6].

2. Related Work

A set of heuristic algorithms have been designed to schedule meta-tasks to grid computing
systems. It is assumed that the heuristic derive mapping statically for the collection of independent
meta-task. The scheduling problem is computationally hard even though there are no data
dependencies among the jobs.

2.1 MCT
Minimum Completion Time (MCT) assigns each task, in arbitrary order, to the machine with the
minimum expected completion time for that task. This causes some tasks to be assigned to
machines that do not have the minimum execution time for them [6].

2.2 Min-min
Min-min heuristic uses minimum completion time (MCT) as a metric, meaning that the task which
can be completed the earliest is given priority. This heuristic begins with the set U of all
unmapped tasks. Then the set of minimum completion times (M), is found.

 M consists of one entry for each unmapped task. Next, the task with the overall minimum
completion time from M is selected and assigned to the corresponding machine and the workload
of the selected machine will be updated. And finally the newly mapped task is removed from U
and the process repeats until all tasks are mapped [11, 12].

2.3 Max-min
The Max-min heuristic is very similar to Min-min and its metric is MCT too. It begins with the set
U of all unmapped tasks. Then, the set of minimum completion times (M) is found as mentioned
in previous section. Next, the task with the overall maximum completion time from M is selected
and assigned to the corresponding machine and the workload of the selected machine will be
updated. And finally the newly mapped task is removed from U and the process repeats until all
tasks are mapped [6, 11].

KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011

27

2.4 LJFR-SJFR
LJFR-SJFR heuristic begins with the set U of all unmapped tasks. Then the set of minimum
completion times is found the same as Min-min. Next, the task with the overall minimum
completion time from M is considered as the shortest job in the fastest resource (SJFR). Also the
task with the overall maximum completion time from M is considered as the longest job in the
fastest resource (LJFR). At the beginning, this method assigns the m longest tasks to the m
available fastest resources (LJFR). Then this method assigns the shortest task to the fastest
resource, and the longest task to the fastest resource alternatively [5, 13].Though the above stated
heuristic algorithms have advantages, they do have their own disadvantages. The experimental
results from [5-8, 14-16] show that other heuristic (such as OLB, MET, Work Queue, Maxstd and
Tabu) do not produce good mappings. In contrast, others are able to deliver good performance and
more, only they are intended. Among the stated algorithms, Min-min is the simple and fastest
algorithm.

3. Differential Evolution

Differential Evolution (DE) is a reliable, versatile and easy to use stochastic evolutionary
optimization algorithm. DE is a population-based optimizer that evolves real encoded vectors
representing the solutions to given problem. The DE starts with an initial population of N real-
valued vectors. The vectors are initialized with real values either randomly or so that they are
evenly spread over the problem domain [17]. The latter initialization usually leads to better results
of the optimization process. During the optimization, DE generates new vectors that are
perturbations of existing population vectors. The algorithm perturbs vectors with the scaled
difference of two randomly selected population vectors and adds the scaled random vector
difference to a third selected population vector to produce so called trial vector. The trial vector
competes with a member of the current population with the same index. If the trial vector
represents a better solution than the population vector, it takes its place in the population.
Differential evolution is parameterized by two parameters [18]. Scale factor F (0, 1) controls the
rate at which the population evolves and the crossover probability C [0, 1] determines the ratio of
bits that are transferred to the trial vector from its opponent. Figure 1 shows the pseudo code of
DE algorithm.

KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011

28

Figure 1. Differential Evolution Algorithm.

 In the proposed scheduling algorithm, the solution is represented as an array of lengths,
which are equal to the number of jobs. The value corresponding to each position i in the array
represent the resource to which job i is allocated. The job-to-resource representation is illustrated
in Figure 2.

2 3 1 6 4 5 1 13 …

Figure 2. Job-to-resource representation (chromosome)

 Assume schedule S from the set of all possible schedules Sched. Each chromosome has a
fitness value, which is the makespan that results from the matching of tasks to machines within
that chromosome. For Differential Evolution, we define a fitness function fit(S): Sched → R that
evaluates each schedule:

 We have implemented Differential Evolution for scheduling of independent tasks on
heterogeneous independent environments. Storn and Price [17] suggested total ten different
working strategies of DE and some guidelines in applying these strategies to any given problem.
The Differential Evolution algorithm has implemented as DE/rand/1/exp [19]. The DE algorithm
has used with parameters summarized in Table I. The parameters have set after brief initial tuning.

KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011

29

Table 1. A summary of DE parameters

Parameter Value
Population size 20

Terminating generation 60000/10000
Probability of crossover 0.3

Scaling factor 0.9

4. Problem Definition

The main goal of the task scheduling in grid computing systems is the efficiently allocating tasks
to machines. Tasks are originated from different users/applications, and are independent. We use
the ETC (Expected Time to Compute) matrix model introduced by Shoukat et al. for formulating
the problem [20]. It is assumed that an accurate estimate of the expected execution time for each
task on each machine is known prior to execution and contained within an ETC matrix. Each row
of the ETC matrix contains the estimated execution times for a given task on each machine.
Similarly, each column of the ETC matrix consists of the estimated execution times of a given
machine for each task. ETC[i,j] is the expected execution time of task i in machine j. For the
simulation studies, characteristics of the ETC matrices have varied in an attempt to represent a
range of possible heterogeneous environments. Using the ETC matrix model, the scheduling
problem can be defined as follows:

• A number of independent tasks to be allocated to the available resources. Because of
Non-preemptive scheduling, each task has to be processed completely in a single
machine.

• Number of machines is available to participate in the allocation of tasks.
• Ready[m] represents the ready time of the machine after completing the previously

assigned tasks.
• ETC matrix of size , where n represents the number of tasks and m represents the

number of machines.

 A meta-task is defined as a collection of independent task (i.e. task doesn’t require any
communication with other tasks) [21]. Tasks derive mapping statically. For static mapping, the
number of tasks, n and the number of machines, m is known a priori. Assume that

(i∈{1,2,...,n}, j∈{1,2,..., m}) is the completion time for performing ith task in jth machine and
(j∈{1,2,...,m}) is the previous workload of , then Eq. (1) shows the time required for to
complete the tasks included in it. According to the aforementioned definition, makespan can be
estimated using Eq. (2) [5, 10].

 (1)

 (2)

A flow chart of DE is shown in Figure 3 and r0, r1, r2 and I are distinct indices which are not
made explicit in this figure.

KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011

30

Figure 3. A flow chart of DE’s generate-and-test loop

5. Experiments

In this section, after the benchmark description, various heuristic scheduling algorithms were
developed to compare with the DE algorithm. The experimental results, discussed below, have
obtained by a PC with 2 GHz processor and 2 GB of RAM using Matlab environment. The
implemented DE operates on a population of 20 chromosomes (possible mappings) for a given
meta-task. Each chromosome is a 512*1 vector. The initial population is generated using two
methods: (a) 20 randomly generated chromosomes from a uniform distribution, or (b) one
chromosome that is the Min-min solution (i.e., mapping for the meta-task) and 19 random
solutions. The last method is called seeding the population with a Min-min chromosome. For the
first method, 60000 iterations have been used and the second method was repeated 10000
iterations.

KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011

31

5.1 Benchmark Description
In this paper, we used the benchmark proposed in [6]. The simulation model is based on expected
time to compute (ETC) matrix for 512 tasks and 16 machines. The instances of the benchmark are
classified into 12 different types of ETC matrices according to the three following metrics: task
heterogeneity, machine heterogeneity, and consistency. In ETC matrix, the amount of variance
among the execution times of tasks for a given machine is defined as task heterogeneity. Machine
heterogeneity represents the variation that is possible among the execution times for a given task
across all the machines. Also an ETC matrix is said to be consistent whenever a machine

executes any task faster than machine ; in this case, machine executes all tasks faster than

machine . In contrast, inconsistent matrices characterize the situation where machine may

be faster than machine for some tasks and slower for others. Partially-consistent matrices are
inconsistent matrices that include a consistent sub-matrix of a predefined size (uniform
distribution is used for generating the matrices). Instances consist of 512 tasks and 16 machines
and are labeled as x-yy-zz as follows:

 - x shows the type of inconsistency; c means consistent, i means inconsistent, and p
means partially-consistent
 - yy indicates the heterogeneity of the tasks; hi means high and lo means low
 - zz represents the heterogeneity of the machines; hi means high and lo means low. For
example, c-lohi means low heterogeneity in tasks, high heterogeneity in machines, and consistent
environment.

5.2 Experimental results
Among most popular and extensively studying optimization criterion is the minimization of the
makespan. Small values of makespan mean that the scheduler is providing good and efficient
planning of tasks to resources. The obtained makespan using mentioned heuristics is compared in
Tables ΙΙ. Figure 4 shows the geometric mean of makespan for the 12 considered cases. The
relative performance order of the heuristics from best to worst is: 1-DE/Method b, 2-Minmin, 3-
DE/Method a, 4-MCT, 5- LJFR-SJFR, and 6-Maxmin. DE provided the best mappings for the 12
cases. In the second method of DE, the initial population is upgraded with vector obtained by Min-
min heuristic. The best DE solution always came from one of the populations that had been seeded
with the Min-min solution. However, the additional searching capabilities afforded to DE by
performing crossover and scaling factor are beneficial. It is important to set DE parameters and
feeding initial population.

KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011

32

Table 2. Comparison of obtained makespan values by heuristics

Figure 4. Comparison results between heuristics on makespan

Instance MCT Max-min LJFR-SJFR Min-min DE/Method a DE/Method b

c_hihi 1.13E+07 1.20E+07 1.20E+07 8.38E+06 1.01E+06 8.21E+06
c_hilo 1.58E+05 1.80E+05 1.75E+05 1.33E+05 1.68E+05 1.32E+05
c_lohi 3.83E+05 4.05E+05 4.04E+05 2.81E+05 3.46E+05 2.67E+05
c_lolo 5.30E+03 6.05E+03 5.87E+03 4.50E+03 5.63E+03 4.35E+03
i_hihi 4.28E+06 7.25E+06 6.34E+06 3.58E+06 4.88E+06 3.49E+06
i_hilo 7.39E+04 1.23E+05 1.06E+05 6.65E+04 8.12E+04 6.61E+04
i_lohi 1.45E+05 2.46E+05 2.15E+05 1.21E+05 1.45E+05 1.16E+05
i_lolo 2.47E+03 4.11E+03 3.55E+03 2.26E+03 2.48E+03 2.07E+03
p_hihi 6.23E+06 9.27E+06 8.38E+06 4.86E+06 5.53E+06 4.35E+06
p_hilo 9.82E+04 1.48E+05 1.31E+05 8.43E+04 9.77E+04 7.89E+04
p_lohi 2.10E+05 3.12E+05 2.82E+05 1.64E+05 1.95E+05 1.60E+05
p_lolo 3.32E+03 4.96E+03 4.38E+03 2.83E+03 3.39E+03 2.81E+03

KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011

33

6. Conclusions

Scheduling in grid computing systems is an NP-complete problem. Therefore, using heuristic
algorithms is a suitable approach in order to cope with its difficulty in practice. In this paper, we
have presented DE algorithm for scheduling in grid computing environments. The goal of the
scheduler in this paper is minimizing makespan. The implementation of proposed heuristic
scheduling algorithm and various existing algorithms are tested using the benchmark simulation
model for distributed heterogeneous computing systems by Braun et al. (2001). The experimental
results show that DE algorithm performs better performance than the existing heuristic algorithms
in various systems and settings and also it delivers improved makespan. The optimization
technique of Differential Evolution (DE) has been used for solving the multi-objective parameters
in grid scheduling. Presented algorithm has a number of parameters including C, F and NP. Fine
tuning of DE parameters are subject of our future work.

References

[1] Foster, I. and Kesselman C., 1998. The Grid - Blueprint for a New Computing Infrastructure,

Morgan Kaufmann Publishers.
[2] Tracy, M., Braun, T. D. and Siegel, H., 1998. High-performance Mixed-machine

Heterogeneous Computing. 6th Euro-micro Workshop on Parallel and Distributed
Processing, pp. 3-9.

[3] Fernandez-Baca, D., 1989. Allocating Modules to Processors in a Distributed System. IEEE
Transaction, Software Engineering, pp. 1427–1436.

[4] Fidanova, S. and Durchova, M., 2006. Ant Algorithm for Grid Scheduling Problem, Large
Scale Computing. LNCS, 3743, Springer, pp. 405-412.

[5] Izakian, H., Abraham, A. and Snasel, V., 2009. Comparison of Heuristics for Scheduling
Independent Tasks on Heterogeneous Distributed Environments. Proceedings of the
International Joint Conference on Computational Sciences and Optimization, IEEE, 1, pp. 8-
12.

[6] Braun, R., Siegel, H., Beck, N., Boloni, L., Maheswaran, M., Reuther, A., Robertson, J.,
Theys, M., Yao, M., Hensgen, D. and Freund, R., 2001. A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed
Computing Systems. Journal of Parallel and Distributed Computing, 61(6), pp. 810-837.

[7] Munir, E., Jian-Zhong, L., Sheng-Fei, S. and Rasool, Q., 2007. Performance Analysis of
Task Scheduling Heuristics in Grid. Proceedings of the International Conference on Machine
Learning and Cybernetics (ICMLC), 6, pp. 3093-3098.

[8] Baghban, H. and Rahmani, A., 2008. A Heuristic on Job Scheduling in Grid Computing
Environment. Proceedings of the seventh IEEE International Conference on Grid and
Cooperative Computing, pp. 141-146.

[9] Zhang, Q. and Zhen, L., 2009. Design of Grid Resource Management System Based on
Divided Min-min Scheduling Algorithm. IEEE First International Workshop on Education
Technology and Computer Science, pp. 613-618.

[10] Xhafa, F. and Abraham, A., 2008. Meta-heuristics for Grid Scheduling Problems, In: Meta-
heuristics for Scheduling in Distributed Computing Environments. 146, pp. 1-37, Springer,
Germany.

[11] Freund, R. and Siegel, H,. 1993. Heterogeneous Processing. IEEE Computer, 26(6), pp. 13-
17.

KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011

34

[12] Freund, R. and Gherrity, M., 1998. Scheduling Resources in Multi-user Heterogeneous
Computing Environment with Smart Net. Proceedings of the 7th IEEE HCW.

[13] Abraham, A., Buyya, R. and Nath, B., 2000. Nature's Heuristics for Scheduling Jobs on
Computational Grids. Proceedings of the International Conference on Advanced Computing
and Communications.

[14] Macheswaran, M., Ali, S., Siegel, H., Hensgen, D. and Freund, R., 1999. Dynamic Mapping
of a Class of Independent Tasks onto Heterogeneous Computing Systems. Journal of Parallel
Distributed Computing , 59 (2), pp. 107-131.

[15] Xhafa, F., Barolli, L. and Durresi, A., 2007. Immediate Mode Scheduling in Grid Systems.
International Journal of Web and Grid Services, 3(2), pp. 219-236.

[16] Munir, E., 2008. MaxStd: A Task Scheduling Heuristic for Heterogeneous Computing
Environment. Information Technology Journal, ISSN-1812-5638.

[17] Price, K., Storn, R. and Lampinen, J., 2005. Differential Evolution A Practical Approach to
Global Optimization. Natural Computing Series, Springer-Verlag, Berlin, Germany.

[18] Price, K. and Storn, R., 1997. Differential Evolution: Numerical Optimization Made Easy.
Dr. Dobb’s Journal, pp. 18–24.

[19] Price. K. and Storn, R., 1995. Differential Evolution: a Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces. Technical Report, TR-95-012,
ICSI.

[20] Ali, S., Siegel, H., Maheswaran, M. and Hensgen, D., 2000. Modeling Task Execution Time
Behavior in Heterogeneous Computing Systems. Tamkang Journal Science and Engineering,
pp. 195-207.

[21] Braun, R., Siegel, H., Beck, N., Boloni, L., Maheswaran, M., Reuther, A., Robertson, J.,
Theys, M. and Yao, M., 1998. A Taxonomy for Describing Matching and Scheduling
Heuristics for Mixed-machine Heterogeneous Computing Systems. Proceedings of the 17th
IEEE Symposium on Reliable Distributed Systems, pp. 330-335.

