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Abstract 
 
Grid Computing aims to allow unified access to data, computing power, sensors and other 
resources through a single virtual laboratory. In this paper, we present Differential Evolution 
algorithm based on schedulers for efficiently allocating jobs to resources in a grid computing 
system. Scheduling is a key problem in emergent computational systems, such as Grid and P2P, in 
order to benefit from the large computing capacity of such systems. The general problem of 
optimally mapping tasks to machines in a heterogeneous computing suite has been shown to be 
NP-complete. Experimental results show that our algorithm improves the performance of static 
instances compared to the results of other algorithms reported in the literature. 
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1. Introduction 
 
The emerging paradigm of grid computing and the construction of computational grids [1] are 
making the development of large scale applications possible from optimization and other fields. 
The development or adaptation of applications for grid environments is being challenged by the 
need of scheduling a large number of jobs to resources efficiently. Moreover, the computing 
resources may vary in regard to their objectives, scope and structure as well as to their resource 
management policies such as access and cost. Grid computing and distributed computing, dealing 
with large scale and complex computing problems, are one of the hot topics in the computer 
science and research. Mixed-machine heterogeneous computing (HC) environments utilize a 
distributed suite of different machines, interconnected with computer network, to perform 
different computationally intensive applications that have diverse requirements [2]. Miscellaneous 
resources should be orchestrated to perform a number of tasks in parallel or to solve complex tasks 
divided to variety of independent subtasks [3]. Indeed, the grid environment is dynamic and, also 
the number of resources to manage and the number of jobs to be scheduled are usually very large 
making thus the problem a complex large scale optimization problem. Task scheduling is mapping  
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a set of tasks to a set of resources to efficiently exploit the capabilities of such resources. It has 
been shown, that an optimal mapping of computational tasks to available machines in an HC suite 
is a NP-complete problem [4] and hence, it is a subject to various heuristic and meta-heuristic 
algorithms. The heuristics applied to the task scheduling problem include Min-min heuristic, Max-
min heuristic, longest job to fastest resource- shortest job to fastest resource (LJFR-SJFR) 
heuristic, Sufferage heuristic, Work queue heuristic and others [5-7]. Different criteria can be used 
for evaluating the efficiency of scheduling algorithms; the most important of them is makespan. 
Makespan is the time when grid computing system finishes the latest task. The objectives of 
scheduling algorithm are increasing the system throughput measure, reducing task completion 
time, better resource utilization rate, and balancing the load well [8-10]. In this study, we present 
the implementation of DE algorithm for job scheduling on computational grids that optimizes the 
makespan. The heuristic approaches have been tested using the benchmark model of Braun et al. 
[6]. 
 
 

2. Related Work 
 
A set of heuristic algorithms have been designed to schedule meta-tasks to grid computing 
systems. It is assumed that the heuristic derive mapping statically for the collection of independent 
meta-task. The scheduling problem is computationally hard even though there are no data 
dependencies among the jobs. 
 
2.1 MCT 
Minimum Completion Time (MCT) assigns each task, in arbitrary order, to the machine with the 
minimum expected completion time for that task. This causes some tasks to be assigned to 
machines that do not have the minimum execution time for them [6].  
 
2.2 Min-min  
Min-min heuristic uses minimum completion time (MCT) as a metric, meaning that the task which 
can be completed the earliest is given priority. This heuristic begins with the set U of all 
unmapped tasks. Then the set of minimum completion times (M), is found. 

 

 M consists of one entry for each unmapped task. Next, the task with the overall minimum 
completion time from M is selected and assigned to the corresponding machine and the workload 
of the selected machine will be updated. And finally the newly mapped task is removed from U 
and the process repeats until all tasks are mapped [11, 12].  
 
2.3 Max-min  
The Max-min heuristic is very similar to Min-min and its metric is MCT too. It begins with the set 
U of all unmapped tasks. Then, the set of minimum completion times (M) is found as mentioned 
in previous section. Next, the task with the overall maximum completion time from M is selected 
and assigned to the corresponding machine and the workload of the selected machine will be 
updated. And finally the newly mapped task is removed from U and the process repeats until all 
tasks are mapped [6, 11]. 
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2.4 LJFR-SJFR 
LJFR-SJFR heuristic begins with the set U of all unmapped tasks. Then the set of minimum 
completion times  is found the same as Min-min. Next, the task with the overall minimum 
completion time from M is considered as the shortest job in the fastest resource (SJFR). Also the 
task with the overall maximum completion time from M is considered as the longest job in the 
fastest resource (LJFR). At the beginning, this method assigns the m longest tasks to the m 
available fastest resources (LJFR). Then this method assigns the shortest task to the fastest 
resource, and the longest task to the fastest resource alternatively [5, 13].Though the above stated 
heuristic algorithms have advantages, they do have their own disadvantages. The experimental 
results from [5-8, 14-16] show that other heuristic (such as OLB, MET, Work Queue, Maxstd and 
Tabu) do not produce good mappings. In contrast, others are able to deliver good performance and 
more, only they are intended. Among the stated algorithms, Min-min is the simple and fastest 
algorithm. 
 
 

3. Differential Evolution 
 
Differential Evolution (DE) is a reliable, versatile and easy to use stochastic evolutionary 
optimization algorithm. DE is a population-based optimizer that evolves real encoded vectors 
representing the solutions to given problem. The DE starts with an initial population of N real-
valued vectors. The vectors are initialized with real values either randomly or so that they are 
evenly spread over the problem domain [17]. The latter initialization usually leads to better results 
of the optimization process. During the optimization, DE generates new vectors that are 
perturbations of existing population vectors. The algorithm perturbs vectors with the scaled 
difference of two randomly selected population vectors and adds the scaled random vector 
difference to a third selected population vector to produce so called trial vector. The trial vector 
competes with a member of the current population with the same index. If the trial vector 
represents a better solution than the population vector, it takes its place in the population. 
Differential evolution is parameterized by two parameters [18]. Scale factor F  (0, 1) controls the 
rate at which the population evolves and the crossover probability C  [0, 1] determines the ratio of 
bits that are transferred to the trial vector from its opponent. Figure 1 shows the pseudo code of 
DE algorithm. 
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Figure 1. Differential Evolution Algorithm. 
 
 In the proposed scheduling algorithm, the solution is represented as an array of lengths, 
which are equal to the number of jobs. The value corresponding to each position i in the array 
represent the resource to which job i is allocated. The job-to-resource representation is illustrated 
in Figure 2. 
 

2 3 1 6 4 5 1 13 … 
 

Figure 2. Job-to-resource representation (chromosome) 
 
 Assume schedule S from the set of all possible schedules Sched. Each chromosome has a 
fitness value, which is the makespan that results from the matching of tasks to machines within 
that chromosome. For Differential Evolution, we define a fitness function fit(S): Sched → R that 
evaluates each schedule: 
 

  

 We have implemented Differential Evolution for scheduling of independent tasks on 
heterogeneous independent environments. Storn and Price [17] suggested total ten different 
working strategies of DE and some guidelines in applying these strategies to any given problem. 
The Differential Evolution algorithm has implemented as DE/rand/1/exp [19]. The DE algorithm 
has used with parameters summarized in Table I. The parameters have set after brief initial tuning. 
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Table 1. A summary of DE parameters 

Parameter Value 
Population size 20 

Terminating generation 60000/10000 
Probability of crossover 0.3 

Scaling factor 0.9 
 
 

4. Problem Definition 
 
The main goal of the task scheduling in grid computing systems is the efficiently allocating tasks 
to machines. Tasks are originated from different users/applications, and are independent. We use 
the ETC (Expected Time to Compute) matrix model introduced by Shoukat et al. for formulating 
the problem [20]. It is assumed that an accurate estimate of the expected execution time for each 
task on each machine is known prior to execution and contained within an ETC matrix. Each row 
of the ETC matrix contains the estimated execution times for a given task on each machine. 
Similarly, each column of the ETC matrix consists of the estimated execution times of a given 
machine for each task.  ETC[i,j] is the expected execution time of task i in machine j. For the 
simulation studies, characteristics of the ETC matrices have varied in an attempt to represent a 
range of possible heterogeneous environments. Using the ETC matrix model, the scheduling 
problem can be defined as follows: 

• A number of independent tasks to be allocated to the available resources. Because of 
Non-preemptive scheduling, each task has to be processed completely in a single 
machine. 

• Number of machines is available to participate in the allocation of tasks. 
• Ready[m] represents the ready time of the machine after completing the previously 

assigned tasks. 
• ETC matrix of size , where n represents the number of tasks and m represents the 

number of machines. 

 A meta-task is defined as a collection of independent task (i.e. task doesn’t require any 
communication with other tasks) [21]. Tasks derive mapping statically. For static mapping, the 
number of tasks, n and the number of machines, m is known a priori. Assume that  

(i∈{1,2,...,n}, j∈{1,2,..., m}) is the completion time for performing ith task in jth machine and  
(j∈{1,2,...,m}) is the previous workload of , then Eq. (1) shows the time required for  to 
complete the tasks included in it. According to the aforementioned definition, makespan can be 
estimated using Eq. (2) [5, 10]. 

       (1) 
 

           (2) 

A flow chart of DE is shown in Figure 3 and r0, r1, r2 and I are distinct indices which are not 
made explicit in this figure. 
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Figure 3. A flow chart of DE’s generate-and-test loop 

 
 

5. Experiments 
 
In this section, after the benchmark description, various heuristic scheduling algorithms were 
developed to compare with the DE algorithm. The experimental results, discussed below, have 
obtained by a PC with 2 GHz processor and 2 GB of RAM using Matlab environment. The 
implemented DE operates on a population of 20 chromosomes (possible mappings) for a given 
meta-task. Each chromosome is a 512*1 vector. The initial population is generated using two 
methods: (a) 20 randomly generated chromosomes from a uniform distribution, or (b) one 
chromosome that is the Min-min solution (i.e., mapping for the meta-task) and 19 random 
solutions. The last method is called seeding the population with a Min-min chromosome. For the 
first method, 60000 iterations have been used and the second method was repeated 10000 
iterations. 
 
 
 
 



KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011 
 

31 
 

5.1 Benchmark Description 
In this paper, we used the benchmark proposed in [6]. The simulation model is based on expected 
time to compute (ETC) matrix for 512 tasks and 16 machines. The instances of the benchmark are 
classified into 12 different types of ETC matrices according to the three following metrics: task 
heterogeneity, machine heterogeneity, and consistency. In ETC matrix, the amount of variance 
among the execution times of tasks for a given machine is defined as task heterogeneity. Machine 
heterogeneity represents the variation that is possible among the execution times for a given task 
across all the machines. Also an ETC matrix is said to be consistent whenever a machine  

executes any task  faster than machine ; in this case, machine  executes all tasks faster than 

machine . In contrast, inconsistent matrices characterize the situation where machine  may 

be faster than machine  for some tasks and slower for others. Partially-consistent matrices are 
inconsistent matrices that include a consistent sub-matrix of a predefined size (uniform 
distribution is used for generating the matrices). Instances consist of 512 tasks and 16 machines 
and are labeled as x-yy-zz as follows: 

 - x shows the type of inconsistency; c means consistent, i means inconsistent, and p 
means partially-consistent 
 - yy indicates the heterogeneity of the tasks; hi means high and lo means low 
 - zz represents the heterogeneity of the machines; hi means high and lo means low. For 
example, c-lohi means low heterogeneity in tasks, high heterogeneity in machines, and consistent 
environment. 
 
5.2 Experimental results 
Among most popular and extensively studying optimization criterion is the minimization of the 
makespan. Small values of makespan mean that the scheduler is providing good and efficient 
planning of tasks to resources. The obtained makespan using mentioned heuristics is compared in 
Tables ΙΙ. Figure 4 shows the geometric mean of makespan for the 12 considered cases. The 
relative performance order of the heuristics from best to worst is: 1-DE/Method b, 2-Minmin, 3-
DE/Method a, 4-MCT, 5- LJFR-SJFR, and 6-Maxmin. DE provided the best mappings for the 12 
cases. In the second method of DE, the initial population is upgraded with vector obtained by Min-
min heuristic. The best DE solution always came from one of the populations that had been seeded 
with the Min-min solution. However, the additional searching capabilities afforded to DE by 
performing crossover and scaling factor are beneficial. It is important to set DE parameters and 
feeding initial population. 
 
 

 

 

 

 

 



KMITL Sci. Tech. J. Vol. 11 No. 1 Jan. - Jun. 2011 
 

32 
 

 

 

Table 2. Comparison of obtained makespan values by heuristics 
 

 

 
 
 

 
Figure 4. Comparison results between heuristics on makespan

 
 
 
 
 
 
 

Instance MCT Max-min LJFR-SJFR Min-min DE/Method a DE/Method b 

c_hihi 1.13E+07 1.20E+07 1.20E+07 8.38E+06 1.01E+06 8.21E+06 
c_hilo 1.58E+05 1.80E+05 1.75E+05 1.33E+05 1.68E+05 1.32E+05 
c_lohi 3.83E+05 4.05E+05 4.04E+05 2.81E+05 3.46E+05 2.67E+05 
c_lolo 5.30E+03 6.05E+03 5.87E+03 4.50E+03 5.63E+03 4.35E+03 
i_hihi 4.28E+06 7.25E+06 6.34E+06 3.58E+06 4.88E+06 3.49E+06 
i_hilo 7.39E+04 1.23E+05 1.06E+05 6.65E+04 8.12E+04 6.61E+04 
i_lohi 1.45E+05 2.46E+05 2.15E+05 1.21E+05 1.45E+05 1.16E+05 
i_lolo 2.47E+03 4.11E+03 3.55E+03 2.26E+03 2.48E+03 2.07E+03 
p_hihi 6.23E+06 9.27E+06 8.38E+06 4.86E+06 5.53E+06 4.35E+06 
p_hilo 9.82E+04 1.48E+05 1.31E+05 8.43E+04 9.77E+04 7.89E+04 
p_lohi 2.10E+05 3.12E+05 2.82E+05 1.64E+05 1.95E+05 1.60E+05 
p_lolo 3.32E+03 4.96E+03 4.38E+03 2.83E+03 3.39E+03 2.81E+03 
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6. Conclusions 
 
Scheduling in grid computing systems is an NP-complete problem. Therefore, using heuristic 
algorithms is a suitable approach in order to cope with its difficulty in practice. In this paper, we 
have presented DE algorithm for scheduling in grid computing environments. The goal of the 
scheduler in this paper is minimizing makespan. The implementation of proposed heuristic 
scheduling algorithm and various existing algorithms are tested using the benchmark simulation 
model for distributed heterogeneous computing systems by Braun et al. (2001). The experimental 
results show that DE algorithm performs better performance than the existing heuristic algorithms 
in various systems and settings and also it delivers improved makespan. The optimization 
technique of Differential Evolution (DE) has been used for solving the multi-objective parameters 
in grid scheduling. Presented algorithm has a number of parameters including C, F and NP. Fine 
tuning of DE parameters are subject of our future work. 
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