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ABSTRACT

It is well known that hardness and elastic moduli can be determined by indenting the specimen to
various depths. This paper shows the application of three approximation approaches for this
purpose: the ideal method, Sun’s method, and modified Oliver & Pharr’s method. A comparison
of the results for silicon (100) and high speed steel (HSS) specimens in terms of hardness and 
elastic moduli has been made. In general, the results obtained from the Sun’s method are more
stable and reliable than the other methods.
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1. INTRODUCTION

Recently, many efforts have been made in developing nanoindentation equipment and 
nanoindentation techniques for probing the mechanical properties of materials and thin film on the
sub-micron and nano-scale [1-4]. The most extensively used method to determine the elastic
moduli and hardness by nanoindentation was proposed by Oliver and Pharr [5], in which the slope
of the unloading curve which is usually nonlinear was used to calculate the elastic moduli and to
provide a physically justifiable procedure for determining the depth which should be used in
conjunction with the indenter shape function to establish the contact area at peak load.

2. THEORY OF NANOINDENTATION

Nanoindentation test involves indenting a specimen by a very small load using a high precision
instrument, which records the load and displacement continuously. The mechanical properties of
thin films coatings and substrates can be derived from the measure load-displacement
loading/unloading curve through appropriate data analysis. These tests are based on new
technologies that allow precise measurement and control of the indenting forces and precise
measurement of the indentation depths [6].

In nanoindentation, a prescribed load is applied to a pyramidal or spherical indenter or
other shapes in contact with the specimen surface. As load is applied to the indenter, the depth of 
penetration into the specimen is measured. A nanoindentation test instrument provides
experimental results in the form of a load-displacement curve for the loading and the unloading
parts of the indentation process as shown in Figure 1. An analysis of the unloading data provides a
value for the depth of the circle of contact at full load. The area of contact at full load is 
determined from the known angle or radius of the indenter. The hardness is derived by dividing
the load by the area of contact. The slope of the unloading curve provides a measure of elastic
moduli [7]. To make accurate measurements by indentation experiments, the contact areas of the 
indentations must be precisely known.

* Corresponding author.  Fax: (65) 6790-9081; Email: panich@pmail.ntu.edu.sg

 483



KMITL Sci. J. Vol. 5 No. 2 Jan-Jun 2005 

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80

Load (mN)

D
ep

th
 (

nm
)

Loading

Unloading

Figure 1 Nanoindentation load–displacement curve for high speed steel obtained with a 
Berkovich indenter during loading and unloading

The most popular calibration technique is that of Oliver and Pharr [5] which is based on
the elastic solution of Sneddon [8] for indentation by an axisymmetric body. Sneddon derived
general relationships between load and displacement for many simple punch geometries, written 
as;

m
CKhP (1)

where P is the indentation load, hc is the measured depth, and K and m are constants.

Values of the exponent m for some common punch geometries are m = 1 for flat cylinders, m = 2
for cones, m = 1.5 for spheres and m = 1.5 for paraboliods. The proportional constant K is 
determined by materials properties and indenter geometry.  Sun, Bell and Smith [unpublished] and 
Hainsworth [9] have shown that, for the specified perfectly sharp indenter, K is mainly determined
by Young’s moduli and the hardness of the indenting material. So far, experiments have shown
that indentation loading curves obtained with Berkovich indenters (m = 2) are usually well-
described by equation (1).

Because the displacements during unloading are elastic, the relationship between the
unloading curve and the elastic moduli of the material being tested can be described by elastic
contact theory. Pharr et al. [10] have shown that the compliance of the contact between any
axisymmetric indenter and an elastically isotropic half-space is given by
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where S is the experimentally measured stiffness of unloading data, A is the projected
area of the contact, Cs is the specimen’s compliance and P is the load on the indenter. Er is the
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reduced moduli owing to the effects of elastic deformation of indenter (non-rigidity) and is the
combined Moduli of the indenter and the specimen. Es, s, Ei and i are the elastic moduli and

Poisson’s ratio of the specimen and indenter, respectively (here taken to be 1,141 GPa and 0.07 for
diamond). Equation (2) has its origins in elastic contact theory and many investigators accept that 
it can be applied to any indenter that can be described as a body of revolution of a smooth
function. In the usual way we define the hardness of the material, H, to be the mean pressure
exerted by the indenter at maximum load, 

A

P
H

max
      (4)

where Pmax is the maximum load applied during the indentation and A is the projected
area of contact between the indenter and the specimen. The measurements of indentation moduli
and hardness depend on knowing the contact area of the indentations. For an ideally sharp
Berkovich indenter the cross-sectional area in terms of contact depth is expressed as follows:

25.24)( CC hhA      (5)

However, in reality all indenters have a certain degree of roundness and imperfection, as 
shown in Figure 2. The area function of the actual indenter tip must therefore be calibrated
experimentally.

Figure 2 Schematic diagram showing the geometry of a round tip indenter

From Figure 2, the correction depth, , is the difference in depth between the ideally sharp tip and
the round tip of radius r.

Oliver & Pharr [5] proposed a method to calibrate the load frame compliance and area
function by using unloading curves to derive the overall compliance of the specimen and the load
frame for each depth. This was based on the assumption that Young’s moduli for the sample does
not vary with depth, and iteration technique was then used to derive the Cf value for the load

frame. The method followed by modeling the load frame and the specimen as two springs in
series, in which case 

      (6)fS CCC

where C is the total measured compliance and Cs is the compliance of the specimen.

Since the specimen compliance during elastic contact is given by the inverse of the contact
stiffness, S, Eqs. (2) and (6) combine to yield
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It is thus seen that if the moduli is constant, a plot of C vs. A-1/2 is linear for a given
material, and the intercept of the plot is a direct measure of the load frame compliance.
Furthermore, the best values of Cf are obtained when the first term on the right-hand side of Eq.

(7) is small, i.e., for large indentations.
For the area function of the indenter tip, the method is based on the assumption that the

elastic is dependent on indentation depth and specific values for the moduli are not assumed. To
find the area function the method took advantage of the fact that relatively large indentations can
be made in aluminum because of its low hardness. Furthermore, for the largest indentations the
area function for the ideal Berkovich geometry can be used to provide a first estimate of contact

area. Initial estimates of Cf and Er were thus obtained by plotting C vs. A-1/2 for the two largest

indentations in aluminum. Using these values, contact areas were computed for all indentation
sizes by rewriting Eq. (7) as 
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from which an initial guess at the area function was made by fitting the A vs. hc data to the

relationship
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where C1 through C8 are constants. The lead term describes a perfect Berkovich indenter; the

others describe deviations from the Berkovich geometry due to blunting at the tip. On the other
hand, this technique is time consuming and involves a series of indentation experiments from
small depths to large depths.

Recently, Sun et al. [11] propose a technique for accurate and quick determination of the
indenter tip radius and load frame compliance by accounting the correction depth . Analyses of
the obtained loading curves showed that the load frame compliance of the nanoindentation
instrument can be determined from the single loading curve. In an actual indentation experiment,
the obtained raw load-depth data during the loading stage can be described by the second-order
polynomial dependence of depth on the square root of load, from which the Cf is determined. For

a round tip indenter, it is obvious that Eq. (1) no longer holds true. However, as proposed by
Cheng and Cheng [12], if the correction depth  is taken into account, then Eq. (1) can also be
used to describe approximately the loading curve of a round tip indenter indenting an elastic-
perfectly plastic material for depths greater than d, the depth at which the sphere of the tip touches
the cone, that is for hc d;

2)( ChKP (10)

then,
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At any time during loading, the total measured displacement (h) is expressed as the sum 
of the contact depth or the specimen displacement (hc) and the displacement of the surface at the 

perimeter of the contact or the load frame displacement (hs). It then follows;
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fCSC PChhhh     (12)

where Cf is the load frame compliance and P is the load on the indenter. In real indentation

experiments, the total depth from Eq. (8) is measured by the instrument. Hence, combining Eqs.
(11) and (12) leads to (for h d)

2
1

2
1

PKPCh f .     (13)

Clearly, a plot of the measured total depth h against the square root of the indentation

load 2
1

P  results in a second-order polynomial dependence of h on 2
1

P . From the curve of h

against 2
1

P  for silicon, obviously, the intercept of the plot is a direct measure of Cf and the last 

term of polynomial equation is . The area of indenter tip shows in equation (14) by accounting
the correction depth (Fig.2) in the ideal method.

2)(5.24 ChA (14)

Another approach for indenter tip area function calibration, which  employed by the
commercial instrument: NanoTestTM [13], is the modified O&P method which user uses the two
first term of the O&P area function, i.e. 

2
CC bhahA       (15)

where a and b are constants, which are determined experimentally by following the O&P
procedure outlined previously.

3. EXPERIMENT

Silicon (100) and high speed steel (HSS) were chosen as testing samples in this study. In order to
eliminate the surface roughness problem, the specimen’s surface needs to be prepared. In addition
to high speed steel case, it was ground by standard metallurgical silicon-carbide waterproof papers
(grid size 180, 320, 800 and 1,000) and polished. The HSS surface was ultrasonically cleaned with
acetone at 20 ºC for 5 minutes as well.

Silicon and high speed steel were indented by diamond Berkovich indenter in sub-micron
or nano-scales. The experiment was performed using the NanoTestTM [12] (Micro Materials Ltd.,
Wrexham, United Kingdom) at the Surface Engineering Laboratory, School of Materials
Engineering, Nanyang Technological University. The NanoTest device measures the movement of
a calibrated diamond indenter penetrating into a specimen surface at a controlled loading rate. This
device uses a pendulum pivoted on bearings which are essentially frictionless. The indenter used
in this work is a Berkovich diamond, a three-sided pyramid, which is widely used for
nanoindentation work because it can be machined down very accurately to a very sharp tip with a 
curvature radius of one half of a nanometer. The NanoTest device is capable of resolutions of the
order of 0.1 N and 0.1 nm for the load and displacement respectively, depending on the load and
displacement ranges used. For the purpose of statistics and reliability, it is recommended to use ten
loading/unloading curves in each experiment. The experiment then involved indenting the
specimen to ten different peak depths, from 100 to 1,000 nm, and recording the load-displacement
data during the loading and unloading stages. Five indents were made at each peak depth to obtain
average results. This involved a total of 50 indentation experiments for each specimen.
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4. RESULTS AND DISCUSSION

For the silicon specimen, ten peak loads were investigated starting at 2.92 mN and successively 
increasing the load at 10.76, 18.32, 30.08, 44.78, 61.76, 81.76, 104.14, 127.99, 154.44 mN. The
loading/unloading rate was also raised at a value of 1 mN/s for the 2.92 mN indentations as shown
in the loading/unloading curves in Figure 3.

For high speed steel, ten peak loads were investigated starting at 3.71 mN and 
successively increasing the load at 11.14, 21.49, 38.02, 56.10, 74.18, 95.69, 123.02, 150.22,
184.81 mN. The loading and unloading rate was also raised at a value of 1 mN/s for the 3.71 mN
indentations as shown in the loading/unloading curves in Figure 4.

 Figure 3 The loading/unloading curves showing ten peak loads of silicon

The hardness and the moduli elastic value of silicon and high speed steel were derived
from the indentation unloading curves, using all three methods mentioned above. The contact
depth was determined by the O&P procedure, i.e. for fitting the initial part (30% for silicon and 70
% for high speed steel) of the unloading data using the power law function then deriving the
tangent of the curve at maximum load.

Figures 5 and 6 show the values of the hardness and reduced moduli of silicon, whilst
Figure 7 and Figure 8 show the value of the hardness and reduced moduli of high speed steel, as 
derived from Sun’s method, the modified O&P method and the ideal method.

  Figure 4 The loading/unloading curves showing ten peak loads of high speed steel
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  Figure 5 Comparison of the values of the hardness of silicon derived by
Sun’s method, the modified O&P method and the ideal method
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 Figure 6 Comparison of the values of the reduced moduli of silicon derived by
Sun’s method, the modified O&P method and the ideal method
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  Figure 7 Comparison of the values of the hardness of high sped steel derived by
Sun’s method, the modified O&P method and the ideal method
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Figure 8 Comparison of the values of the reduced moduli of high sped steel derived by
 Sun’s method, the modified O&P method and the ideal method

Obviously, the values of H and Er shown in  Figures 5-8 show that the Sun’s method are
more stable than the Ideal method and the modified Oliver and Pharr’s method. The values of H
and Er reported in Figures 5-8 significantly drop at low loads. This behavior is normal owing to
the fact that the area function obtained by fitting is incorrect at low loads because of the
preponderant weight of the measurements done for P 20 mN, as shown in Figure 9. Figure 9
demonstrates the reduced moduli versus the maximum load of silicon and HSS extracted by
experiment.
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Figure 9 The reduced moduli versus the maximum load of silicon and HSS 
  extracted by experiment

To evaluate the predictive capabilities of the hardness and reduced moduli determination,
hardness and reduced moduli obtained by averaging the experimental results of five experiments
were compared with commonly accepted values from the literature in Table 1. 

 490



KMITL Sci. J. Vol. 5 No. 2 Jan-Jun 2005 

Table 1 Comparison of measured hardness and reduced moduli with accepted values in the
literature

Material Method Experimental Literature Poisson's
ratio

References

E
(GPa)

H
(GPa)

E
(GPa)

H (GPa) 

Silicon
(100)

Modified O&P's
method

154.9 11.5

Sun's method 151.8 11.1 130 *  11.5 ** 0.28 * [14]

Ideal method 168.7 13.8 ** [15]
HSS Modified O&P's

method 218.4 13.8

Sun's method 213.9 13.3  210
67-69
(HRC) 0.30 [16]

Ideal method 236.64 16.4

The table shows that for silicon, the hardness calculated from the experiments are all
within 3.5 % of the literature values except the hardness computed from the ideal method which
has 20 % error from the literature value. From Table 1, a good agreement between the experiment
and the literature hardness indicates that Sun’s method and the modified O&P’s method work well 
and reliable. However, the measured reduced moduli is higher than the literature about 16 % for
both of Sun’s method and the modified O&P’s method and about 29 % for the ideal method. This
is owing to the high anisotropy of silicon.

For high speed steel, the reduced moduli computed from the experiments are all within 
1.8 % error for Sun’s method, 3.8 % for the modified O&P’s method and 12.6 % for the ideal
method of the literature values. From the table, a good agreement between the experiment and the
literature hardness then indicates that the Sun’s method and the modified O&P’s method also
work well and may be use to measure the intrinsic mechanical properties of this bulk material. On 
the other hand, the hardness in the table between the experiment and the literature cannot be
compared due to the different references. In this work, all harness values were measured in GPa 
(109), but in the literature used in HRC unit. Nevertheless, a reliable value of the hardness of HSS
should be measured from the experiment. In addition, from Table 1, Sun’s method and the
modified O&P’s method show that the hardness of HSS should be 13.3 GPa and 13.8 GPa,
respectively.

5. CONCLUSION

Methods to obtain the hardness and reduced moduli from three approaches are presented. Based
on the experimental data and results obtained by calculation using, it can be seen that values
derived from Sun’s method are more stable than the Ideal method and the modified Oliver and
Pharr’s method. The results of the area function and load frame compliance are crucial to 
determine the real value of contact area in elastic-plastic region. Thus this novel method (Sun’s
method) has the potential to determine the precise values of two important mechanical properties. 
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