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ABSTRACT

The Moser’s worm problem asks for a smallest set on the plane that contains a
congruent copy of every unit arc. Such smallest covering set has not been found yet.
The smallest known cover constructed by Norwood and Poole in 2003 [6] has area 0.260437.
In this work, we adapt their idea to construct a smaller cover of  area 0.26007. We also
simplify the proof that the set constructed this way contains a congruent copy of every
unit arc.
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1. INTRODUCTION

In 1966, Leo Moser posted a famous
problem asking for the smallest set on the
plane that contains a congruent copy of every
unit arc [1]. The problem is later known
as the Moser’s worm problem. This problem
is similar to another well known problem,
the Lebesgue’s universal cover problem that
asks for the smallest set on the plane that
contains a congruent copy of every set with
diameter at most 1. Due to their similarity,
both problems are still open. Unfortunately,
the existence of  the solution of  the worm
problem is not yet confirmed. However,
if we insist the solution set to be convex,
the Blaschke’s selection theorem will guarantee
the existence.

A direct application of  the Moser’s
worm problem is to economize the cost of

the material required to cover a variation of
objects with a certain length. For instance,
a company can design a bandage shaped
similar to a Moser’s worm cover to guarantee
that the bandage can cover a one-inch cut of
any shape.

For convenience, we call a set that contains
a congruent copy of  every set in a family F,
a cover for F. The simplest cover for unit
arcs is a disk of  radius 1. To cover a unit arc
γ  by this disk, we just locate the center of
the disk at one end of  γ. Then γ will be
contained in the disk which has area
π ≈ 3.14159. By placing the midpoint of γ
at the center, we can see easily that a disk of
radius    is also a cover.  The smaller disk has
area   ≈ 0.78540. Despite the difficulty of the
problem, many covers are found and keep
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getting smaller and smaller.
The first few notable covers are found

in 1970’s. The first cover is by Meir [2] where
the cover is a half of the disk of radius   and
hence of  area    ≈ 0.39270. Then Wetzel [2]
showed that a sector of  area 0.34501 is a cover.
After that, Gerriets [3], and then Gerriets
and Poole [4] found smaller covers of  areas
0.3214 and 0.28610 respectively. In 1989,
Norwood, Poole, and Laidacker constructed
a cover of area 2.7524 [5]. All these covers
are convex so far. And finally, in 2003,
Norwood and Poole came up with a
non-convex cover of area 0.260437 [6].
See Figure 1.
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Figure 1. The non-convex cover by
Norwood and Poole of  area 0.260437.

The upper boundary of this cover is a
circular arc and the lower boundary is
composed of 2 parabolic arcs between 2
circular arcs.

In this work, we improve the latest
cover in [6] by replacing the upper boundary
with an elliptic arc and follow the same
construction concept. We also simplify
the proof in [6] while maintain the same
numberings for the properties and cases.

Beside the original problem by Moser,
many variations of the problem has been
investigated. For example, the problem of
finding the smallest cover for closed unit
arcs. Another interesting variation is to find
the smallest cover for convex unit arcs.
For the latter, the currently smallest cover
found is by Wichiramala [7].

2. MATERIALS AND METHODS

2.1 The New Cover
Our new cover C+ in Figure 2 has area

0.26007, which is smaller than 0.260437 of
the current smallest cover by Norwood and
Poole [6].

Figure 2. The new cover of area 0.26007.

To construct C+, we start with an ellipse
E: (   )2 + (       )2 = 1  where E contains
(   , 0) as in Figure 3.
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Figure 3. The ellipse E.

By simple calculation, we have y
c
 =

-b √1 -      . As we consider the part of E on
the upper half plane, we may regard E as the
graph of f (x) = b√1 - (   )2 + y

c
. Next we let

L be the locus of points whose distances to
Y-axis and to E add up to   (see Figure 4).

1
4a2

x
a

1
2

Figure 4. The locus L.
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Hence g + √(g - x)2 + (h - y)2 =    and
the slope s of the segment from (g, h) to (x, y)
is        =        .

Thus g + (x - g)√1 + s 2 =   , and then

g = x -          . By a similar argument on

the slope, we get h = y - (x - g)s.
From now on, we may treat g and h as

the functions of x. Let l be the function with
graph L. Hence l(x) = h(g -1(x)).

Our proposed new cover C+ is bounded
by the graphs y = f (x) (the top of C+) and
y = min(l(x), - f (x)) (the bottom of C+).

2.2 Properties of the New Cover
From the construction of the bottom of

C+, we have the following property.
Property A: Every arc from Y-axis that meet
the bottom of C+ and then meet the top of
C+ must be at least    in length.

As C+ is parametrized by a and b, we wish
to find a and b that minimize the area of C+

with the following property.

Property B: Every arc from (0, 0) that meets
the top of C+ and then meets the bottom of
C+ must be at least     in length.

We use Mathematica’s Minimize
command to show that any arc from (0, 0)
that meets the top of the cover C+ with
a = 1.95272, b = 4.58588  and then meets
the bottom of C+ has length at least
0.500001. This cover has area 0.26007.
Therefore, this cover satisfies the Property
B and has area smaller than the cover
constructed by Norwood and Poole in [6].

These two properties will help to prove
that C+ can cover any planar arc of length
one.

3. RESULTS AND DISCUSSION

In this section, we will prove that C+ is a

cover for every unit arc. Note that, as we will
follow the similar idea of proof as in [6], we
keep the same numbering of cases in the
proof of the main theorem.
Theorem 3.1 Every unit arc can be covered
by C+.

Proof. We assume the contrary that an
arc  cannot be covered by C+. By [8], we
may assume that γ is simple, i.e. it does not
intersect itself. Let m be the midpoint of γ
where it is divided into 2 subarcs α and β
of length   .

Our placing scheme is to place γ into C+

by locating m on the Y-axis and move γ
down until it touches the bottom of C+.
Our moving scheme is also to keep m on
the Y-axis. For convenience, we use T+and
B+ to denote the top and the bottom of
C+ respectively.

We divide into cases according to
whether each half of γ can touch B+.

Case 1: Only β can touch B+. We consider
the situation where m is as lowest as
possible. We call this property MPS1
(minimal positioning scheme). We then
subdivide this case into smaller cases
according to whether β is in C+.

Case 1A: β is not in C+.
By properties A and B, the y-coordinate

of  is above X-axis (see Figure 5).
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Figure 5. β touches B+ and is not in C+.
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Now let C++ be the reflected copy of C++

as illustrated in Figure 6, and denote the
reflect copy of T+ and B+ by T++ and B++

respectively.
Due to its isometry to C+, we have that

β is not above T++. By properties A and B
applying to C++, β does not cross B++. Hence
we may translate γ upward (if necessary) so
that γ touchesB++. Since we are in Case 1, α
never touches B++ and thus we now place γ
with m closer to B++ than to B+ at the original
position, a contradiction to MPS1.

Case 1B: β is in C+. Hence α is not in C+

Let a be a points on α above T+ (see
Figure 7).

∧

Figure 7. β touches B+ and is in C+.

Note that both γ and β are under B++.
Now translate γ upward until it touches B++.
We will divide into subcases according to
whether or not β is in C++.

Subcase 1B1: β is in C++. Thus α is not in C++.
In particular, α has a point b below B++

(see Figure 8).

∧

Figure 8. β touches B++ and α is not in C++.

In this position, a is still above T+.
Now go back to the original position of γ
and translate C++ downward to touch γ.
We have that β is between T+ and T++, and is
on one side of the subarc from a to b
(see the shaded region in Figure 9).

∧

∧ ∧

Figure 9. β is in the shaded region.

Then if we rotate γ (counter clockwise
according to the figure) so that m is on Y-axis
and a and b are on the same level. Without
loss of  generality, because the arc is simple,
we may assume β is above the subarc from
a to b. In this orientation, as we translate γ
down, α will touch T+, a contradiction to the
assumption in case 1.

Subcase 1B2: β is not in C++ (see Figure 10).

Figure 10. β touches B++ and is not in C++.

From the original position of γ, translate C++

downward until T++ touches β.
Let S be the tangent line touching α and

β from above (see Figure 11).
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Now we move down and rotate γ and S
together until  has slope -1. In particular S is
now parallel to the tangent line of the top
right of B++ (see Figure 12).

Figure 11. The line S touches α and β from
above.

Figure 12. γ and S are rotated so that S has
slope -1.

While translating γ up, since α cannot touch
B++, β will eventually touch the left half of
B++. Now we rotate γ counter clockwise while
keeping β touching B++ until β also touches
the right half  of  B++. As α is above β, β is
not in C++ and also travels from Y-axis to
visit both the left and the right halves of B++.
This contradicts Properties A and B.

Case 2: both α and β may touch B+.
By continuity, there are orientations that
both halves of  γ touch B+. We consider the
situation that m is as low as possible and both
halves touch B+. We call this property MPS2.

Without loss of  generality, we may
suppose that β is not in C+ (see Figure 13).

By properties A and B, y
m
 > 0.

Figure 13. Both α and β touch B+.

Hence both α and β do not cross B++.
When we translate γ up, if  needed, either α
or β touches B++.

Case 2A: β touches B++ at b. Hence β is in C++

and thus α is not in C++ and is not below
B+. Let a be a point of α below T++ as in
Figure 14.

∧

∧

Figure 14. β touches B++ at b and a point a
of α is below T++.

∧ ∧

Hence α is below B++ and then we may rotate
γ clockwise while keeping β touching B++.
As the subarc from a to b is on the left of
the remaining subarc (of β ), the rotation
will move α to touch B++. Otherwise,
β will also touch the left half of B++,
a contradiction to Properties A and B
similar to the end of case 1B2.

During the rotation, if y
m
 = 0 when β

touches B++ at b′, we may use the fact that

∧ ∧
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x
b′ >   to conclude that further rotation

clockwise would bring m up. This computation
is due to the fact that the shortest distance
from the origin to B++ is greater than 0.2663
(which can be confirmed computationally)
and that the original β touches B+. This is the
other necessary condition used in the proof
in [6]. Note, however, that the shortest
distance in [6] is greater than 0.2645. Hence
we reach a position that m is closer to
B++ than to B+ at the original position,
a contradiction to MPS2.

Case 2B: α touches B++. Similar to the previous
case, we rotate γ counterclockwise until β
also touches B++. During the rotation, if
y

m
 = 0 when α touches B++ at c′, further

rotation would bring m up as x
c′ >   .

This completes the proof.

4. CONCLUSIONS

In this work, we modify the cover of
area 0.260437 constructed by Norwood and
Poole to obtain a smaller cover of  area
0.26007 provided that we use a = 1.95272
and b = 4.58588. Note that there are other
values of a and b such that the corresponding
cover contains all unit worms and has area
smaller than 0.260437. The aforementioned
values of a and b have yet to be proven to
give the smallest cover among the family of
covers constructed this way.
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