Characterization of Crude Alkaline $\boldsymbol{\beta}$-mannosidase produced by Bacillus sp. 3A Isolated from Degraded Palm Kernel Cake

Abiodun Anthony Onilude, Ilesanmi Festus Fadahunsi, Ukponobong Effiong Antia, Emmanuel Oluwaseun Garuba and Mohammed Inuwa Ja'afaru

Microbial Physiology and Biochemistry Laboratory, Department of Microbiology
University of Ibadan, Ibadan, Oyo State, Nigeria
E-mail: <onealbee2000@yahoo.com; sanmifadahunsi@ yahoo.com;
bigdon_ydr@yahoo.com; oluwaseungaruba@live.com; mijaafaru@yahoo.com>

Abstract

A recently isolated Bacillus sp. 3A from degraded palm kernel cake was employed for β-mannosidase production in a 1.5% (w/v) Locust bean gum at pH 9.0. This isolate produced up to 22.62 ± 2.3 nkat/ml of alkaline β-mannosidase. pH and temperature studies on the activity of the enzyme revealed that the alkaline β-mannosidase had optimum activity at pH 7.5 and $50^{\circ} \mathrm{C}$, respectively. The enzyme retained about 80% of its activity at pH 5.5-9.0 after 30 minutes of incubation at $50^{\circ} \mathrm{C}$. Investigation into the ability of the enzyme to resist thermal unfolding in the absence of substrate showed that the enzyme remained stable for 30 minutes between 30 and $70^{\circ} \mathrm{C}$ with a great decrease in activity noticed at temperature above $70^{\circ} \mathrm{C}$. The K_{m} and $V_{\max }$ values for p -nitrophenyl- β-D-mannopyranoside were 0.845 mM and $42.92 \mathrm{nkat} / \mathrm{mg}$. Partial purification by ammonium sulphate precipitation and dialysis resulted in an increased specific activity from 441.99 nkat/mg to $1,645 \mathrm{nkat} / \mathrm{mg}$. These distinctive properties of the crude alkaline β-mannosidase from Bacillus sp. 3A make this enzyme attractive for industrial application.

Keywords: Bacillus sp. 3A, Alkaline β-mannosidase, Characterization, Locust bean gum.

Introduction

The β-mannosidase (EC 3.2.1.25) is an enzyme that can remove the terminal mannose of Mannan polysaccharides. Mannan is a linear or branched polymer made up of a $\beta-1,4-$ linked backbone containing mannose or a combination of glucose and mannose residues (Stalbrand et al. 1995). It is a major part of the hemicellulose fraction in softwoods and plant tissues where mannans play a structural role acting as hemicelluloses that bind cellulose (Moreira and Filho 2008; Akino et al. 1987). It also occurs in non-starch carbohydrate reserves in endosperm walls and vacuoles of seeds and vacuoles of vegetative tissues. Liepman et al. (2007) also gave evidence of an additional mannan function as a signaling molecule in plant growth and development.

Because of the hydrolytic properties of the β-mannosidase enzyme, it has found tremendous applications in transmannosylation and effective utilization of agro-industrial wastes. The transglycosylation ability of β-Dmannosidases is very useful in the field of oligosacharide synthesis as β-mannopyranoside linkage is one of the most difficult glycosidic bonds to synthesize (Ennis and Osborn 2003) because of its 1,2-cis-arrangement and the stereoelectronically disfavoured anomeric equatorial C-O linkage (Taubken and Thiem 1992). Together with β-mannanases, β mannosidases are widely used in the saccharification of hemicellulose for further conversion to chemicals and fuels, in the treatment of coffee beans, in the production of konjac, in the hydrolysis of galactomannans used in oil and gas drilling and in the biobleaching of pulp and paper (Wong and

Saddler 1993; de Vries 2003). The enzyme also provides a useful tool for structural studies of stock polysaccharides having β-mannosidic linkages and for the sequencing of heteropolysaccharides and carbohydrate moieties of numerous glycoproteins (de Vries 2003; Bhat 2000). Although there exist reports on the occurrence of β-mannosidase enzyme from various sources such as marine algae, germinating seeds, invertebrates and vertebrates, only a few reports exist on the purification and characterization of microbial β-mannosidases (Gomes et al. 2007). Moreover, the reports on alkaline β mannosidase can aptly be described as limited when compared with those on other β mannanases (Oda and Tonomura 1996) despite its biotechnological potentials. Onilude et al. (2012) reported the production of alkaline β mannosidase form Bacillus sp. 3A using various agro-industrial residues as substrate. This present work reports the characteristics of a crude alkaline β-mannosidase produced by a Bacillus sp. 3A. This is necessary so as to determine its suitability for industrial purposes.

Materials and Methods

Materials and Chemicals

The p-nitrophenol was purchased from BDH chemicals (England, UK), Locust bean gum and p-Nitrophenyl β-D-mannopyranoside were purchased from Sigma Chemicals (St. Louis, MO, USA). All other chemicals were of analytical grade.

Microorganisms and Culture Conditions

The Bacillus sp. strain 3A used in this study was obtained from the Culture Collection of the Microbial Physiology and Biochemistry Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria. The isolate was sub-culture and maintained on Tryptose Soy Agar (TSA).

Inoculum Preparation

The inoculum used was prepared by transferring a loopful of 24 -hour old culture into a $100-\mathrm{ml}$ Erlenmeyer's flask containing 50 ml seed medium of composition $(\mathrm{g} / \mathrm{l})$: Soluble starch 10, Peptone 10, Yeast extract $5, \mathrm{NaCl}$

80, $\mathrm{K}_{2} \mathrm{HPO}_{4} 1.5$, and MgSO_{4} 0.3. The seed culture medium was prepared in glycine- NaOH buffer (pH 9.0) using the modified method of Lin et al. (2007). Inoculation was done after sterilizing the medium at $121^{\circ} \mathrm{C}$ for 15 minutes. Inoculated medium was incubated at $37^{\circ} \mathrm{C}$ for 24 hours.

Enzyme Production

A modified medium of Jiang et al. (2006) containing (g / l): Locust bean gum 15, Yeast Extract 4, Peptone 8, $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O} 0.6$, and $\mathrm{NaH}_{2} \mathrm{PO}_{4} 5$ in glycine- NaOH buffer pH 9. 50 ml of this medium in 250 ml Erlenmeyer's flask was inoculated with a $2 \%(\mathrm{v} / \mathrm{v})$ of the inoculum and incubated at $35^{\circ} \mathrm{C}$. After 48 hours of incubation, the cells were removed by centrifugation at $10,000 \mathrm{~g}$ and $4^{\circ} \mathrm{C}$ for 15 minutes. The resulted supernatant was used as crude enzyme preparation.

Enzyme Assay and Protein Determination

The alkaline β-D-mannosidase activity was assayed according to the method of Hossain et al. (1996) using $50 \mu \mathrm{~L}$ of $1 \mathrm{mM} p$ -nitrophenyl- β-D-mannopyranoside, $175 \mu \mathrm{~L}$ of 50 mM Phosphate buffer (pH 7.0) and $25 \mu \mathrm{~L}$ of the enzyme solution. The reaction was stopped by the addition of $350 \mu \mathrm{~L}$ of $0.2 \mathrm{M} \mathrm{Na} 2_{2} \mathrm{CO}_{3}$ after incubation at $50^{\circ} \mathrm{C}$ for 15 minutes. The liberated p-nitrophenol was measured at 405 nm using Lamda 25 UV/V spectrophotometer. One nanokatal (nkat) of alkaline β-Dmannosidase activity was defined as that amount of enzyme required to catalyze the release of $1 \mathrm{nmol} p$-nitrophenol s^{-1} under the assay conditions.

The soluble protein concentration was measured by the method of Lowry et al. (1951) using bovine serum albumin (BSA) as standard.

Determination of $\mathbf{p H}$ and Temperature Optima and Stabilities

The pH optimum of the alkaline β-Dmannosidase was determined by measuring its activity at pH values ranging from 3.5-11.0 using 50 mM Citrate-phosphate buffer ($\mathrm{pH} 3.5-$ 6.0), 50 mM Sodium phosphate buffer ($\mathrm{pH} 6.5-$ 8.0), and 50 mM Glycine- NaOH buffer (pH 8.5-11). The temperature optimum of the
enzyme was determined using the method of Jiang et al. (2006). The assay mixtures were incubated at different temperature ranging from $30-90^{\circ} \mathrm{C}$ in 50 mM Phosphate buffer at pH 7.0 . The pH stability of the enzyme was determined by mixing the crude enzyme with buffers at different pH values $(\mathrm{pH} 3.5-6.0,50 \mathrm{mM}$ Citrtate-phosphate buffer; $\mathrm{pH} 6.5-8.0,50 \mathrm{mM}$ Sodium phosphate buffer and $\mathrm{pH} 8.5-11.0,50$ mM Glycine- NaOH buffer). The mixture was incubated for 30 minutes at $50^{\circ} \mathrm{C}$ after which the residual alkaline β-mannosidase activity was determined (Jiang et al. 2006). The thermal stability of the enzyme was determined by assaying for residual enzyme activity after incubation at various temperatures $\left(30^{\circ} \mathrm{C}\right.$ $90^{\circ} \mathrm{C}$) for 30 minutes in 50 mM Phosphate buffer (pH 7.0).

Effect of Metal Ions and Various Reagents on Enzyme Activity

The effect of metal ions and other reagents on alkaline- β-mannosidase activity was determined by assaying for residual activity after incubating $25 \mu \mathrm{~L}$ of the crude enzyme with $175 \mu \mathrm{~L}$ of 1 mM of the various metal ions and reagents dissolved in sodiumphosphate buffer, pH 7.0 for 30 minutes at $50^{\circ} \mathrm{C}$. Metal ions and reagents used include EDTA, Urea, $\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Ca}^{+}, \mathrm{Fe}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Fe}^{3+}$, $\mathrm{Mg}^{2+}, \mathrm{Ni}^{+}, \mathrm{Zn}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Hg}^{2+}$, and Benzoic acid.

Kinetic Parameters

Kinetic parameters of alkaline β mannosidase from Bacillus sp. 3A were determined using reaction mixtures containing p-nitrophenyl β-D mannopyranside in sodiumphosphate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.0$). The release of p-nitrophenol was measured using different initial substrate concentrations ($0.1 \mathrm{mM}-1$ $\mathrm{mM})$. All assays were performed in triplicates. Values for the maximal velocity ($V_{\max }$) and Michaelis-Menten constant $\left(K_{m}\right)$ were determined using Lineweaver-Burk double reciprocal plot.

Partial Purification of the Alkaline $\boldsymbol{\beta}$ Mannosidase

The alkaline β-mannosidase enzyme was partially purified using the ammonium sulphate precipitation method. The culture broth was
centrifuged at $10,000 \mathrm{rpm}$ for 15 minutes at $4^{\circ} \mathrm{C}$ to remove the bacterial cells. The extract was dispensed into clean Erlenmeyer flask and treated with solid ammonium sulphate to bring $0-50 \%$ and $50-100 \%$ saturation, respectively. The mixture for each batch of percentage saturation was stirred continuously to completely dissolve the ammonium sulphate. On dissolution, the set-up was kept at $4^{\circ} \mathrm{C}$ for 24 hours after which it was centrifuged at $10,000 \mathrm{rpm}$ for 15 minutes at $4^{\circ} \mathrm{C}$ and filtered to obtain the precipitate. The supernatant was treated to the next batch of precipitation. At the end, the precipitates from each batch were pulled and re-suspended in a buffer (0.05 M Phosphate buffer, pH 7.0) of initial volume of culture filtrate and dialyzed in a tubular cellulose membrane against two liters of the same buffer for 24 hours at $4^{\circ} \mathrm{C}$. Enzyme activity and protein content were determined at each stage of partial purification.

Statistical Analysis

All experiments were carried out in triplicates (at least) and the results presented are mean and standard deviation values. Separation of means was done using Duncan Multiple Range Test (Duncan 1955).

Results and Discussion

Bacillus sp. 3A was positive for the productions of alkaline β-mannosidase when cultured in 1.5% Locust bean gum in submerge fermentation giving an enzyme titer of $22.62 \pm$ $2.32 \mathrm{nkat} / \mathrm{ml}$.

Optimum pH and pH Stability

Investigation into the optimum pH of activity of the alkaline β-mannosidase of Bacillus sp. 3A revealed that it was active over a wide range of $\mathrm{pH}(5.5-8.5)$. However, pH 7.5 appears to be the optimum pH for the activity of this crude enzyme (Fig. 1a). Similar pH values have also been reported for β mannosidase of alkalophilic Bacillus sp. AM001 (Akino et al. 1987) and halostable β mannosidase of Bacillus sp. NN (Wainø and Ingvorsen 1999). Reduction in the activity of alkaline β-mannosidase of Bacillus sp. 3A beyond pH 7.5 could be as a result of the
changes in the state of acidic or basic amino acids in the protein caused by the measure of hydrogen ion concentration (Zittan 1981). Results of the pH stability studies of alkaline β mannosidase produced by Bacillus sp.3A showed that the enzyme was most stable at pH 8.0 (having 100% activity (100%) at this pH after 30 minutes of incubation at $50^{\circ} \mathrm{C}$ (Fig. $1 \mathrm{~b})$. The good stability of the enzyme under alkaline conditions may be explained by the ability of the bacterium to grow under alkaline conditions.

This stability under alkaline condition is advantageous as it may be used together with other hemicellulolytic enzymes for application in kraft pulping (Kansoh and Nagieb 2004), detergent industry (Bettiol and Showell 2002) and hydraulic fracturing of oil well (McCutchen et al. 1996) which are usually done at high pH levels.

Fig. 1. Effect of different pH levels on the activity (a) and stability (b) of alkaline β mannosidase from Bacillus sp. 3A produced in $1.5 \% \mathrm{w} / \mathrm{v}$ Locust bean gum.

Optimum Temperature and Thermal Stability

As shown in Fig. 2a, alkaline β mannosidase of Bacillus sp. 3A has optimal activity at $50^{\circ} \mathrm{C}$. Below this temperature, enzyme activity was found to increase with an increase in temperature (Fig. 2a). Above the optimum temperature, the enzyme was found to decrease with a corresponding increase in temperature. Optimum β-mannosidase activity at high temperatures has also been reported in literatures: Akino et al. (1987) observed $55^{\circ} \mathrm{C}$ as optimum for β-mannosidase produced by alkalophilic Bacillus sp. AM001 and $50^{\circ} \mathrm{C}$ $60^{\circ} \mathrm{C}$ for β-mannosidase from Bacillus sp. KK01 (Hossain et al. 1996). Decrease in β mannosidase activity at temperatures beyond the optimum could be due to the weakening of the intermolecular forces responsible of the preservation of its three-dimensional structure (Misset 1993). With respect to thermal stability which is an enzyme's ability to resist thermal unfolding in the absence of its substrate, this alkaline β-mannosidase in this present investigation retained 100% of its activity at $60^{\circ} \mathrm{C}$ after 30 minutes of incubation (Fig. 2b).

Fig. 2. Effect of temperature on the activity (a) and stability (b) of alkaline β-mannosidase from Bacillus sp. 3A produced in 1\% Locust bean gum.

The thermo-stability of the crude alkaline β-mannosidase makes this enzyme attractive for use in industrial processes that make use of β-mannosidase at elevated temperatures.

Effect of Various Metal Ions and Chemical Inhibitors

Studies on the effect of various metal ions and other chemical reagents on the activity of the alkaline β-mannosidase produced by Bacillus sp. 3A as presented in Fig. 3a,b revealed that the alkaline- β-mannosidase activity was strongly activated by $\mathrm{Fe}^{3+}(200 \%)$, $\mathrm{Zn}^{2+}(100 \%)$ and $\mathrm{Ni}^{2+}(50 \%)$; and was inhibited by $\mathrm{Na}^{2+}(75 \%), \mathrm{Ca}^{2+}(20 \%)$ and $\mathrm{K}^{2+}(50 \%)$. $\mathrm{Mn}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Fe}^{2+}$, and Cu^{2+} all had no effect on the activity of the enzyme (Fig. 3a). As shown in Fig. 3b, all the inhibitors studied varied in their inhibitive ability: Urea (50\%), EDTA (30\%), HgCl_{2} (30\%) and Benzoic acid (40\%).

(a)
(b)

Fig. 3. Effect of metal ions (a) and inhibitors (b) on the activity of alkaline β-mannosidase from Bacillus sp. 3A.

Interestingly, none of these compounds could completely inhibit the activity of alkaline β-mannosidase of Bacillus sp. 3A, thus confirming the assertion of Fujinami and Fujisawa (2010) that alkaline enzymes often show activities in a broad pH range, they are thermo-stable and tolerant to oxidants/inhibitors. Inhibition of this β mannosidase by EDTA is suggestive of the dependence of this enzyme on divalent ion for its catalytic activity as they affects the catalytic activity of the enzyme as it relates to divalent cofactors. The effect of metal ions on enzyme activity may be relevant when considering the use of substrate with high salt content.

Kinetic Parameters

Kinetic parameters studied revealed that, in the presence of sufficient substrate, alkaline β-mannosidase of Bacillus sp. 3A had a maximum velocity ($V_{\max }$) of $42.92 \mathrm{nkat} / \mathrm{mg}$. Also, at 0.845 mM concentration of the substrate p-Nitrophenyl β-D-mannopyranoside, alkaline β-mannosidase converted the substrate to product at half its maximal velocity $\left(K_{m}\right) . K_{m}$ of 0.30 mM and $V_{\max }$ of $500 \mathrm{nkat} / \mathrm{mg}$ were recorded for Aspergillus niger (Ademark et al. 2001). Oda and Tonomura (1996) recorded $91.7 \mathrm{U} / \mathrm{mg}$ protein for $V_{\max }$ and $0.2 \mathrm{mmol} / \mathrm{L}$ for K_{m} for the β-mannosidase of the yeast Trichosporon cutaneum JCM 2947. Also, 1.1 mM and $61 \mathrm{nkat} / \mathrm{mg}$ were recorded for the K_{m} and $V_{\max }$ of Thermoascus aurantiacus (Gomes et al. 2007), while 2.4 mM and $50 \mathrm{U} / \mathrm{mg}$ were noted, respectively, as the K_{m} and $V_{\text {max }}$ Aplysia fasciata - a marine anaspidean by Andreotti et al. (2005). From the above values, there exist great variations in the kinetic parameters of β mannosidase of different sources.

Partial Purification of Alkaline $\boldsymbol{\beta}$ Mannosidase

After 3.7-fold purification level, 4.5\% activity was recovered resulting in an increase in specific activity from $441.99 \mathrm{nkat} / \mathrm{mg}$ to $2645.16 \mathrm{nkat} / \mathrm{mg}$ (Table 1).

Table 1. Purification of alkaline β-mannosidase from the culture filtrate of Bacillus sp.3A grown on Locust bean gum at $35^{\circ} \mathrm{C}$.

Purification steps	Volume (ml)	Total enzyme activity (nkat)	Total protein (mg)	Specific activity $(\mathrm{nkat} / \mathrm{mg})$	Purification factor	Recovery $(\%)$
Crude filtrate	100	$2,209.95$	5	441.99	1	100
Ammonium sulphate	100	$1,864.8$	2.4	777.00	1.76	84.38
Dialysis	15	98.7	0.06	$1,645.16$	3.7	4.5

Conclusion

Conclusively, this works presents the characteristics of the crude β-mannosidase from Bacillus sp. 3A as showing high thermostability and good pH stability at alkaline pH range. These properties make this enzyme of great potential importance in industrial processes such as kraft pulping, detergent industry, hydraulic fracturing of oil well which make use of β-mannosidase at high pH values.

Acknowledgement

The authors wish to thank the Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria, for providing the laboratory facilities used during the course of this work.

References

Akino, T.; Nakamura, N.; and Horikoshi, K. 1987. Production of β-mannosidase and β mannanase by an alkalophilic Bacillus sp. Applied Microbiology and Biotechnology 26(4): 323-7, July.
Andreotti, G.; Giordano, A.; Tramice, A.; Mollo, E.; and Trincone, A. 2005. Purification and characterization of a β-Dmannosidase from the marine anaspidean Aplysia fasciata. Journal of Biotechnology 119(1): 26-35, September.
Bettiol, J.-L.P.; and Showell, M.S. 2002. Detergent compositions comprising a mannanase and a protease. US Patent 6,376,445. United States Patent and Trademark Office (USPTO), Alexandria, VA, USA.

Bhat, M.K. 2000. Cellulases and related enzymes in biotechnology (Research review paper). Biotechnology Advances 18: 35583, August.
de Vries, R.P. 2003. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production (Minireview). Applied Microbiology and Biotechnology 61(1): 10-20, March.
Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11(1): 1-42, March.
Ennis, S.C.; and Osborn, H.M.I. 2003. The stereoselective synthesis of β-mannosides. In: Osborn, H.M.I. (ed.). Carbohydrates. Best Synthetic Methods Series. Academic Press, San Diego, CA, USA. pp. 239-76.
Fujinami, S.; and Fujisawa, M. 2010. Industrial applications of alkaliphiles and their enzymes - past, present and future. Environmental Technology 31(8-9): 845-56, July-August.
Gomes, J.; Terler, K.; Kratzer, R.; Kainz, E.; and Steiner, W. 2007. Production of thermostable β-mannosidase by a strain of Thermoascus aurantiacus: Isolation, partial purification and characterization of the enzyme. Enzyme and Microbial Technology 40(4): 969-75, March.
Hossain, M.Z.; Abe, J.-i.; and Hizukuri, S. 1996. Multiple forms of β-mannanase from Bacillus sp. KK01. Enzyme and Microbial Technology 18 (2): 95-98, February.
Jiang, Z.; Wei, Y.; Li, D.; Li, L.; Chai, P.; and Kusakabe, I. 2006. High-level production, purification and characterization of a thermostable β-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydrate Polymers 66(1): 88-96, October.

Kansoh, A.L.; and Nagieb, Z.A. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie Van Leeuwenhoek 85(2): 103-14, February.
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; and Randall, R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193: 265-75, November.
Liepman, A.H.; Nairn, C.J.; Willats, W.G.T.; Sørensen, I.; Roberts, A.W.; and Keegstra, K. 2007. Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of Mannans in plants. Plant Physiology 143(4): 1,881-93, April.
Misset, O. 1993. Stability of industrial enzymes. In: van den Tweel, W.; Harder, A.; and Buitelaar, R. (editors). Stability and Stabilization of Enzymes. Elsevier, Amsterdam, The Netherlands. pp. 111-31.
McCutchen, C.M.; Duffaud, G.D.; Leduc, P.; Petersen, A.R.; Tayal, A.; Khan, S.A.; and Kelly, R.M. 1996. Characterization of extremely thermostable enzymatic breakers ($\alpha-1,6$-galactosidase and β-1,4-mannanase) from the hyperthermophilic bacterium Thermotoga neapolitana 5068 for hydrolysis of guar gum. Biotechnological Bioengineering 52(2): 332-9, October.
Moreira, L.R.S.; and Filho, E.X.F. 2008. An overview of mannan structure and mannan-
degrading enzyme systems. Applied Microbiology and Biotechnology 79(2): 165-78, May.
Oda, Y.; and Tonomura, K. 1996. Characterization of β-mannanase and β mannosidase secreted from the yeast Trichosporon cutaneum JCM 2947. Letters in Applied Microbiology 22(2): 173-78, February.
Onilude, A.A.; Fadahunsi, I.F.; Garuba, E.O.; and Antia, U. 2012. Production of alkaline β-mannosidase by Bacillus sp. 3A in solid state fermentation using different agro wastes. Researcher 4(1): 48-54. Available: <http://www.sciencepub.net/researcher/resea rch0401/008_7856research0401_48_54.pdf>.
Taubken, N.; and Thiem, J. 1992. Enzymatic
Synthesis of Alkyl and Hydroxyalkyl β-DMannopyranosides. Synthesis 6: 517-18.
Wainø, M.; and Ingvorsen, K. 1999. Production of halostable β-mannanase and β-mannosidase by strain NN, a new extremely halotolerant bacterium. Applied Microbiology and Biotechnology 52(5): 675-80, November.
Wong, K.K.Y.; and Saddler, J.N. 1993. Applications of hemicellulases in the food, feed, and pulp and paper industries. In: Coughlan, M.P.; and Hazlewood, G.P. (editors). Hemicellulose and Hemicellulases. Portland Press, London, UK. pp. 127-43.
Zittan, L. 1981. Enzymatic hydrolysis of inulin - an alternative way to fructose production. Starch - Stärke 33(11): 373-7.

