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Abstract: In this paper, we use optimization modeling and Monte Carlo simulation to study the 
implications of fuel price uncertainty on the analysis of carbon taxation in Japan, covering projection 
to 2025. Based on a multi-period linear programming, the model provides the expected minimum cost 
of total energy system and measures the risk on the optimal allocation of investment for capacity 
expansion. The risk was measured by the variance of Monte Carlo runs. Under unpredictable prices of 
fossil fuels, simulation results indicated that the risk on the expected system cost does not vary 
proportionally with the carbon tax rates. However, this risk could be mitigated by the optimal 
diversifications of renewable energy and other clean technologies (e.g., nuclear power and 
hydroelectric), if the carbon tax rate was properly set. It was found that a carbon tax rate of around 200 
US$/ton C is an efficient tax rate that imposes the lowest risk on the expected system cost. Wind 
power was also found to be an important part of a least-cost/low-risk portfolio of renewable energy 
sources. This study offers an improvement over the more ad hoc judgments used in traditional models 
for energy planning and policy such as sensitivity and worst-case scenario analyses. 
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Introduction  
 
System modeling has become an increasingly important tool for developing national energy and 
environmental policies. One of the most popular models is integrated resource planning (IRP), which 
identifies the optimal portfolio of resource uses and technology deployments over time. However, the 
model usually assumes perfect information about the characteristics of the energy-economic system. 
This is difficult and poses risks for decision makers, especially in long-term analyses that involve large 
uncertainties in the decision-making process1. In general, uncertainty is handled by making ad hoc 
judgments about sensitivity, comparing scenarios, performing worst-case analyses, etc. Furthermore, 
in more comprehensive analyses, important uncertainties are different according to what decision 
makers define and what they need for the robust decision. As a result, many uncertainty analyses are 
inevitably subjective and require different modeling approaches2. For these reasons, the analysis of 
national energy planning and policies is still an area of active research, particularly since each country 
has its own characteristic of energy resources, economic structures, environmental restrictions and 
uncertainty concerns, which produce dissimilar optimum planning/policy strategies. For instance, 
Birge and Rosa [3] used the stochastic Global 2100 model, which is based on the United States 
economy to analyze CO2 emission policy. Their analysis considered the uncertain returns on new 
technology investment. The MARKAL (MARKet ALlocation) model has been used to analyze 
greenhouse gas abatement policies in Québec and India [4,5]. In these cases, important uncertainties 
were considered by a macroeconomic growth, a mitigation level and a tax on carbon emissions.  
 
In Japan, energy security is a major public policy concern. Japanese energy consumption is among the 
highest in the world, but the country lacks domestic energy resources. In 2002, it was reported that the 
country imports 99% of its primary energy fossil fuels [6]. This leaves the Japanese energy supply 
highly vulnerable to disruptions in the international energy markets. Fig. 1 shows the fuel price trends 
in Japan from 1975 to 2002, during which the annual growth rates were somewhat unpredictable. 
Besides, recent awareness of global warming has increased the policy dilemma for Japan because of 
the conflicting goals of energy security and CO2 emissions control (e.g., a carbon taxation policy). 
Therefore, Japanese energy planning and policy analysis seem to be conducted within two major 
perspectives: 1) efficient policies and their impacts on the economy, and 2) future alternative of energy 
system. For example, Goto and Sawa [7] investigated the macroeconomic costs of various policies for 
controlling CO2 emissions, including a trade off relationship between these costs and the sectoral 
impacts of carbon taxation [8]. An outlook for Japan’s energy supply and demand with projection to 
2015 was also proposed, in which structural changes in the economy and society were taken into 
consideration [9]. Nakata and Lamont [10] conducted an impact analysis of energy and carbon taxes 
on Japanese energy systems. They concluded that the energy tax would be a more stable approach to 
maintaining a diversity of energy resources. Using the same modeling approach, the impact of nuclear 
phase-out was also analyzed [11]. Recently, Hunt and Ninomiya [12] conducted an empirical analysis 
of the relationship between energy demand, gross national product (GNP) and the real energy price in 
Japan in order to investigate various future scenarios for primary energy demand and CO2 emissions in 
the context of the Kyoto reduction target. Although these analyses have been well-documented in 
Japan’s future energy planning and policies, they do not explicitly account for the fuel price 
uncertainty that is one of the most important uncertainties in the country’s energy security concerns. 1 
  
 
It should be noted that, in this paper, uncertainty and risk are used interchangeably in a manner not consistent with some 
discussions in the literature, where the risk usually assumes that decision makers know the distribution of the future 
outcome (e.g., probability distributions). This assumption is not true in the case of uncertainty because the situation under 
consideration is in highly unusual (see also Knight [1]). Whenever, we discuss uncertainty or risk, we assume that the 
distribution is known. 2 See also Kann and Weyant [2] for a unifying framework for comparing the different types of 
uncertainty analyses. 
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Fig.1 Historical trends of fuel price in Japes 
  
Building on reviews of literature related to fuel price risk [13-16], this paper focuses on the 
implications of fuel price uncertainty on the the analysis of carbon taxation in Japan, covering 
projection to 2025. Using an integrated resource planning approach, we developed an optimization 
model incorporating the Monte Carlo technique simulation to measure this fuel price risk and to 
explore how it influences the decision-making process for the optimal allocation of investment. The 
proposed model offers, not only an improvement over the more ad hoc decisions required in traditional 
analyses, but a better understanding of how to design efficient planning/policy instruments that impose 
the lowest risk. 
 
Descriptions and Model Framework  
 
As shown in Fig. 2, the model framework is constructed using multi-period linear programming and 
Monte Carlo simulation to determine not only the expected minimum cost of the total system under the 
uncertainty of fuel prices but also the optimal allocation of investment under carbon taxation. The 
energy–economic system (data inputs) was constructed based on a bottom-up modeling approach since 
it can analyze into the details of technology potential and their future development. The Monte Carlo 
simulation technique was incorporated in order to ascertain the impacts of fuel price uncertainty on the 
expected system cost, the decisionmaking process of capacity expansion and the level of CO2 
emissions. This approach consists of simultaneously varying the fuel price parameters using random 
sampling and then running the optimization model for each discrete set of random parameters in search 
of variables in the model. The results of Monte Carlo simulation are based on statistical interpretation. 
The process of Monte Carlo simulation is terminated after checking the accuracy of the objective 
function (by observing the convergence of standard deviation); otherwise it is necessary to increase the 
size of random samples. In the following subsections, we provide a brief of mathematical formulations 
of the objective function, followed by model specifications and important of model assumptions. 
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Fig. 2 Model framework for analysis of fuel price uncertainty 

 
Mathematical formulations 
Unpredictable fossil fuel prices are taken into account by using the Monte Carlo simulation technique 
to represent the stochastic environment of fossil fuel prices. These random parameters are assumed to 
enter the model in the form of annual growth rates. Under this system framework, the probability 
density function of the annual growth rate of fuel price is assumed to be known3 (e.g., normal 
distribution). Thus, historical data on fuel price trends is helpful to prescribe these distribution 
functions. To be compatible with a linear programming model, we formulated the fuel price 
uncertainty for various fossil fuels based on conversion technologies. For a given of sample size, 
random fossil fuel prices can be generated by Eq. (1). 
 

 
 

Within the framework of multi-period linear programming, the objective function is the least present 
value of total system costs for technologies chosen to satisfy end-use energy demands, environmental 
and other constraints. This total present cost consists of capital investments, fixed operation and 
maintenance (O&M) costs, fuel costs and associated environmental costs for carbon taxation. A 
simplified form of the objective function can be written as follows: 
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Model specifications and assumptions 
In this paper, we analyzed two future scenarios. The reference scenario is the “business as usual” 
(BAU) scenario, in which there was no planning or policy action (as constraints). The second scenario 
is the “carbon taxation” (TAX) scenario. In this scenario, a penalty cost was assessed on technologies 
that emit CO2 emissions. Two carbon tax rates—100 US$/ton C and 350 US$/ton C—were 
emphasized to represent “a little less” and “a little more” control of CO2 emissions, respectively. This 
scenario also assumes that the revenues from carbon taxation were not used to subsidize for energy 
programs. In addition, we assume that the annual growth rates of fuel prices vary independently 
according to the normal (Gaussian) distribution function4. By using the mean value and standard 
deviation derived from the historical data shown in Fig. 1, the random growth rates of fuel prices can 
be generated, in which 2,000 random samples were used in Monte Carlo simulation. Greater accuracy 
could be achieved, but the computing costs are significant. This sample size was selected because of 
the limited computation. The reference system for energy supply-demand was recently updated with 
energy-economic statistics of Japan as a case study [6]. The time frame for simulation starts from 2001 
to 2025. The energy-economic system covers 15 end-use sectors and 55 conversion technologies of 
various types. The database of various energy technologies was created using data from many 
publications [19-29]. Since the techno-economic characterizations of various energy technologies 
(e.g., specific investment cost, specific O&M cost, conversion efficiency and lifetime) are individually 
dependent upon the location and scope of the study, some of the original references are hyperlinked to 
the internet.  
 
The optimization model is written in GAMS (General Algebraic Modeling System) code and uses the 
CPLEX package to solve linear programming problems [30]. The complete model comprises of 9,004 
constraints and 9,152 variables, and takes a few hours (including Monte Carlo simulation) to execute 
on a standard PC. The mathematical details and complete computer code are available from the 
corresponding author. 
 
 
3Although an assumption to know a probability distribution may seem limiting, for evaluating energy planning and policy 
decision makers may not need to know the whole probability distribution and the future outcome accurately because the 
focus is mainly about the impact of fuel price uncertainty on some decision variables. Hence, a subjective specification of 
the probability distribution can give useful information, although it may exclusively be plausible for some decision makers 
and be implausible for others.  
4 It is not our intention here to prescribe the most suitable probability distributions for the parameter growth rates. Hence, 
we use the normal distribution since it is commonly employed to represent the uncertainty resulting from unbiased 
measurement error. The issue of using alternative distributions (non-normality) had been extensively studied in regard to 
electric utility resource decisions [17]. In addition, Morgan and Henrion [18] provide methods for estimating other 
probability distributions from observed data and evaluating the fit of a distribution.  
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Results and Discussion  
 
Optimal allocation of investment 
To confine our discussion, the simulation results related to the optimal allocation of investment for 
capacity expansion are first presented using the expected (mean) value of Monte Carlo runs5. As 
shown in Fig. 3, the cumulative capacity expansion under the BAU scenario relies heavily on coal 
technology as the lowest fuel price compared to other fossil fuels. This result indicates that the higher 
price and greater variation in the growth rate of natural gas make it uncompetitive in the long run, 
although the specific cost of investment in natural gas is lower than that of coal technology. As for 
renewable energy, wind and biomass (biomass co-firing) also penetrate the market. It is clear that, for 
wind energy, the decisions to expand capacity are made since the early stages of the planning period, 
while for biomass co-firing, they are made at the end of the planning period. This is because there is no 
fuel cost for wind turbines, whereas biomass co-firing operations have a biomass cost. Hence, the 
decisions to expand capacity for these technologies are optimally made at different points in the 
planning period. However, wind and biomass together have only a small market share under the BAU 
scenario since they are still too expensive (as wind energy has a low resource availability, while 
biomass has a high fuel cost compared to its heating value). 
 

 
 

Fig.3 Cumulative capacity expansion under the BAU scenario 
 
Under the carbon taxation (TAX) scenario, Figs. 4 and 5 show the cumulative capacity expansion at 
carbon tax rates of 100 US$/ton C and 350 US$/ton C, respectively. It is obvious that the cumulative 
capacity of coal technology under the low carbon tax rate (100 $/ton C) is slightly decreased by 7% 
compared to the BAU scenario. The decision on this coal reduction is allocated among cleaner 
technologies, including nuclear power, hydroelectric and renewable energy. This result reveals that 
natural gas and oil technologies mostly are not competitive for “a little less” control of CO2 emissions 
as they share a small market penetration at the end of the planning period. Under the high carbon tax 
rate (350 US$/ton C), however, the cumulative capacity of coal at the end of the planning period is 
reduced by up to 38% as compared to the BAU scenario. Natural gas technology is inevitably required 
for “a little more” control of CO2 emissions, including the more market penetration of nuclear power, 
hydroelectric plant and renewable energy. 
 
5 It is possible to choose other solution options of Monte Carlo simulation for discussion, for example the solutions at 
quartiles or any percentile. However, we discuss the mean value of Monte Carlo runs since it can imply that decision 
makers who choose this mean value are fairly hedging against fuel price uncertainty.  
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Although the average price of natural gas is about three times higher than that of coal, switching from 
coal to natural gas (with the same amount of primary energy input) can reduce CO2 emissions by up to 
43% [23]. Natural gas is then selected as a cleaner fossil fuel since the penalty for CO2 emissions 
would control the consumption of coal fuel. It is worth noting that the decision on natural gas 
expansion is made with a small amount at the early of the planning period, but this capacity expansion 
is significantly increased after 2017. This implies that natural gas technology is somehow exposed to 
fuel price risk, and it would be thus avoided to invest with a large capacity at the early of the planning 
period. This underlying reason yields the same behavior for the power generation fuelled by oil. 
 

 
Fig.4 Cumulative capacity expansion at the carbon tax rare of 100 US&/ton C 

 
 

 
Fig.5 Cumulative capacity expansion at the carbon tax rate of 350 100 US&/ton C 

 
 

Correlation of cost-risk-emissions 
In this section, we roll back to the objective function in which Monte Carlo simulation is used to 
estimate the minimum cost of the total system under fuel price uncertainty. Table 1 summarizes the 
expected total system costs under different scenarios and calculates the probabilities of a normal 
(Gaussian) distribution. These values show the distribution of the random samples that fall within a  
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single and double standard deviations of the mean value. For example, under the BAU scenario, 
approximately 68% of the samples will fall within one standard deviation of the mean value, and over  
95% will fall within two standard deviations. Based on 2,000 of random samples, it is clear that the 
BAU scenario imposes the lowest risk (as measured by the variance), followed by TAX (100 US$/ton 
C) and TAX (350 US$/ton C) scenario. These results imply that the expected total system cost under 
the BAU scenario is the least exposed to the fuel price risk as the decision of capacity expansion is 
certain to be in favor of coal technology, while the carbon taxation scenarios are somewhat sensitive to 
fuel price uncertainty as they adopt more capacities on natural gas technology to control CO2 
emissions. Although it can be concluded that the scenarios related to the control of CO2 emissions are 
exposed to the uncertainty of fuel prices, the optimal combination of renewable and other clean 
technologies in some instances may reduce this vulnerability. The implications of this issue are 
complicated by the interplays among technology decisions, operating decisions and system dynamics 
in that the carbon taxation scenario is described in detail. 
 
 

Table 3 Results of Monte Carlo simulation on expected total system cost 
 

 
 
 
Under carbon taxation, one of the difficult policy dilemmas is a decision about the carbon tax rate that 
should be a trade off between controlling the level of CO2 emissions and choosing clean technologies 
for investment allocation. For this reason, additional simulation experiments were performed at various 
carbon tax rates in order to measure the risks for both the expected total system cost and the expected 
level of CO2 emissions. These risks were measured by the variance of Monte Carlo runs. Fig. 6 shows 
the expected total system cost and expected CO2 emissions in 2025 under different carbon tax rates. 
The error bars are plotted with their variances from Monte Carlo simulation. It is obvious that the risk 
on the expected system cost (vertical error bars) does not vary proportionally with the carbon tax rates. 
This can be explained by the decision-making process for capacity expansion, in which the decision 
made under a low carbon tax rate (as “a little less” control of CO2 emissions) is mainly based on coal 
technology and a small amount of clean technologies, including natural gas, nuclear power, 
hydroelectric and renewable energy. When the carbon tax rate increases (as “a little more” control of 
CO2 emissions), clean technologies must take a greater share of the market. In other words, the 
capacity expansion of these technologies can mitigate the fuel price risk for coal technology. Among 
the clean technologies, however, natural gas is the most exposed to fuel price uncertainty. Therefore, if 
nuclear power, hydroelectric and renewable energy were properly mixed to control CO2 emissions, the 
price risk of fossil fuels on the expected total system cost can be mitigated. It can also be implied 
(from Figs. 4 and 5) that wind power can be viewed as the least-cost/low-risk option among renewable 
energy. In such a case study of Japan, a carbon tax rate of around 200 US$/ton C was found as an 
efficient tax rate that provides the lowest risk on the expected total system cost. This is useful 
information for policy makers, in which the capacity expansion on natural gas technology should be 
optimally invested and a decision about the carbon tax rate (for controlling the level of CO2 emissions)  
should properly be set in order to mitigate the fuel price risk on the expected minimum cost. 
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Expected CO2 emissions 2025 with variance [Million ton C] 

 
Fig. 6 Expected total system cost and expected CO2 emissions in 2025 plotted with variance under 

different carbon tax rates 
 
From the viewpoint of CO2 emissions, it is also obvious that the risk on expected CO2 level in 2025 
(horizontal error bars) does not vary proportionally with the carbon tax rates. Although the higher 
carbon tax rate can better reduce CO2 emissions, the fuel price uncertainty may yield a greater 
dispersion of expected CO2 level. These results indicate that at the very high carbon tax rate the 
decision of capacity expansion is somewhat sensitive to fuel price uncertainty, which in turn yields a 
greater dispersion of the expected of CO2 level.  
 
Therefore, a decision on the carbon tax rate can be analyzed quantitatively through tradeoffs among 
cost, risk and emission reduction. These decision variables can be considered as attributes of the 
decision-making process, and the result of the trade off is dependent upon the decision makers’ 
preference for each attribute. This analysis requires the application of Multiple Criteria Decision-
Making (MCDM) techniques (e.g., compromise programming and lexicographic optimization), which 
is beyond the scope of this study. However, it can be concluded that optimal diversification using 
clean technologies can help not only to reduce CO2 emissions, but also to mitigate the volatile price of 
fossil fuels in a quantitative way. By applying Monte Carlo simulation techniques, such technologies 
were found to be important parts of a least-cost/low-risk portfolio for designing long-term energy 
planning/policy under uncertainty fuel prices. In addition, it can provide better understanding and 
support for the decision-making process when developing efficient policy instruments, such as the 
range of plausible carbon tax rates.  
 
Conclusion 
 
This paper has presented a linear programming model incorporating the Monte Carlo simulation 
technique. The model was used to study the implications of fuel price uncertainty for the analysis of 
carbon taxation in Japan. Fuel price risks embodied in the expected minimum system cost and the 
expected level of CO2 emissions can be quantitatively measured. Under carbon taxation, the model can 
identify a least-cost/low-risk portfolio for the optimal allocation of investment and the range of 
plausible carbon tax rates. This information is valuable for policy decision supports. Consequently, the 
proposed model offers an improved way to make decisions over the more ad hoc judgments required 
by traditional methods such as sensitivity and worst-case analyses. It is worth noting that the aim of 
model is not to recommend future energy planning and policy options, but to provide decision makers  
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with a better understanding of how to design efficient policy instruments that impose the lowest risk, 
especially for a carbon taxation policy. 
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