Asian Journal on Energy and Environment

ISSN 1513-4121 Available online at www.asian-energy-journal.info

Production of Bio-oil by Oxidative Pyrolysis of Sewage Sludge in Rotating Fixed Bed Reactor

Charothon Jindarom¹, Vissanu Meeyoo², Thirasak Rirksomboon¹, Boonyarach Kitiyanan¹, and Pramoch Rangsunvigit¹

¹The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand. 10330

²Center for Advanced Materials and Environmental Research, Mahanakorn University of Technology, Bangkok, Thailand. 10530

Abstract: Pyrolysis is an attractive thermal conversion technology used to produce bio-oil and some chemicals. In this study, we investigated the pyrolysis of sewage sludge under N_2 and CO_2 atmosphere at various temperatures (350-750°C) in a rotating fixed bed reactor. For under N_2 atmosphere, thermal gravimetric analysis (TGA) shows two major reaction peaks centered at 300 and 500°C. However, if CO_2 was used instead of N_2 , the reaction rate at 300°C increased by 40%, and the peak at 500°C was significantly shifted to 425°C with the increasing reaction rate of 8-10%. The components in bio-oil obtained from inert and oxidative pyrolysis were identified. The typical characteristics of bio-oil from inert pyrolysis are mainly oxygenated and nitrogenated of aliphatic compounds, and also a little amount of alicyclic and aromatic compounds. If the pyrolysis, it was found that the amount of aromatic compounds in the bio-oil was also increased while unsaturated and alicyclic compounds were decreased, which is possibly due to the enhancement of polymerization and cyclization by CO_2 . Moreover, where compared with under N_2 atmosphere, the total bio-oil production was improved by 25% under an oxidative pyrolysis condition.

Keywords: Sewage Sludge, Combustion, Oxidative Pyrolysis, Bio-oil, Rotating Fixed Bed Reactor.

Introduction

Sewage sludge is a by-product from wastewater treatment plants (WWTP's). It contains significant amounts of heavy metals, organic toxins and pathogenic microorganism, which are considered to be harmful to the environment and all living organisms [1]. Agricultural use, land filling and incineration are commonly ways to handle sewage sludge. It was reported that heavy metal from sewage sludge can penetrate to soil causing soil contamination. Advantages and disadvantages of these disposal methods are reported elsewhere [2]. Pyrolysis, a thermochemical process, can be considered as a technique to

obtain valuable chemicals from large hydrocarbon molecules. It is a promising technique to reduce amount of sewage sludge and also obtain high value chemicals [3]. Studies covering kinetic modeling of sewage sludge [2, 4-11], products characterization [3, 9 and 12] and pyrolysis mechanism [10] are also available. Typical pyrolysis utilizes an inert gas e.g. nitrogen or helium. However, we suggest using a mild oxidative gas such as carbon dioxide to perform pyrolysis of the sewage sludge. CO_2 is not only a major component in natural gas but also generated by combustion. The emission of CO_2 to the atmosphere has been considered as a serious cause of the global warming or the green house effects. It is of great interest to use CO_2 the sewage sludge pyrolysis since we can simultaneously reduce the green-house gas in the atmosphere and also obtain the more valuable products from sewage sludge. The aim of the present work was to investigate the sewage sludge pyrolysis under CO_2 atmosphere. The effect of CO_2 concentration and the pyrolysis temperature on the gas and liquid products were studied.

Material and Methods

Sample preparation and characterizations

In order to obtain a good representative of sewage sludge sample, the sample collection was done according to the ASTM D346-90. The sample was naturally dried for 1-2 days and ground by using a ball mill. To avoid mass transfer complication, the sample's size of 150-250 μ m was selected for investigation. The elemental compositions of sludge sample were determined by ASTM D3176-89 (Ultimate Analysis) and the weight percent of C, H, N, S and O (by difference) were obtained. Based on ASTM D3172-89, the proximate compositions (i.e. moisture, volatile, fixed carbon and ash content) of sludge was determined. Finally, the higher heating value (HHV, kJ/kg) of the sludge sample was obtained according to ASTM D2015.

Thermogravimetric analysis (TGA)

Thermogravimetric analysis was performed by a Perkin- Elmer Thermo Balance; model TGA7, controlled by a computer with a data acquisition system. The sludge sample was loosely distributed over a sample pan, with initial amount around 10 mg. The nitrogen gas flow rate was set at 20 cm3 min⁻¹ in order to provide inert atmosphere. For oxidative atmosphere, carbon dioxide was used instead of nitrogen to study its effects on pyrolytic mechanisms and products. The sample was heated from ambient temperature to 105°C. Then, the sample was held at 105°C for 12 minutes to ensure that the free-water was completely removed. The sample was heated from 105°C to 800°C in order to scan entire decomposition reactions. The heating rate (20°C min⁻¹) was selected to avoid the heat transfer effect.

Temperature programmed pyrolysis/ Mass spectroscopy (TPPy/MS)

A Blazers OmnistarTM mass spectrometer (MS) with an ion source of electron impact at 70 eV was employed to analyze gas products from the pyrolysis. Using the same experimental conditions as in the thermogravimetric experiment, the sludge sample of 10 mg was pyrolyzed in a quartz tube cell (TPDRO 1100, ThermoFinnigan) directly connected to the mass spectrometer.

Rotating fixed bed reactor (Bio-oil production)

A rotating fixed bed reactor with internal gas distributor was used. The internal diameter of reactor was 12.5 cm. The reactor was a stainless steel and the sludge sample was introduced inside the stainless steel basket over the gas distributor. The production of bio-oil was performed by pyrolysis of sludge at several pyrolysis temperatures (350-750°C) under both N2 and CO₂ atmosphere. The sludgesample around 50 g was introduced to the basket. The gas flow used was 100 cm3/min. For this flow, the estimated residence time was 25 s. The heating rate used was 20°C min⁻¹ which was identical to TGA experiments. The pyrolysis products were swept out of the reactor and passed through a liquid quench system (LQS) and the following four impinger bottles were filled with organic solvent. The

last impinger bottle was empty in order to function as a drop separator. 1-Methoxy-2-propanol was chosen as a sampling solvent because of its good solubility for primary and converted tar, secondary

products, and its solubility with water that prevents the problem of ice formation and simplifies the post-treatment of the samples considerably. For the LQS, a glass tube containing an inner and outer tube connects the stainless flexible tube which its temperature was controlled at 150°C and the solvent stock bottle of the LQS. Mode of operations of LQS can be found elsewhere [14]. The solvent stock bottle of LQS and four impingment bottles were kept in ice/acetone bath. After the end of run, the sampling bottle was weighted and the mass of the tar containing solvent was determined and recorded

Gas chromatography/Mass spectroscopy (GC/MS)

Each liquid pyrolysate obtained at different conditions were analyzed by TraceGC/PolarizQ MS (ThermoFinnigan). The capillary column DB-5 MS was used and the compounds were identified by MS (15-500 a.m.u., 70 eV). The qualitative identification of compounds was performed comparing sample mass spectrum with NIST database reference mass spectrum

Results and Discussion

Sewage sludge characteristics

Proximate and ultimate analysis and higher heating value of sewage sludge are shown in Table 1. The proximate compositions of sludge are mainly volatile matter and ash content, 43 and 46%, respectively. However, the sludge contains relatively small amount of moisture and fixed carbon content, 6 and 4%, respectively. The ultimate analysis is $(C_6H_{11.16}O_{4.44}N_{0.78}S_{0.18})_n$ for dried sewage sludge compared to $(C_6H_{12}O_6)n$ for pure cellulose. The HHV of sludge in this work (13 MJ/kg) is lower than the HHV of sludge reported in other works [13]. It may be due to the relatively low volatile matter and high ash content of this type sludge.

Characteristics of sewage sludge mass loss curves and its kinetics

Fig. 1 represents the Thermogravimetric (TG) diagrams of sludge sample treated by different CO_2 concentration. It can be observed that, at the same temperature, the mass loss of the sludge increases with increasing CO_2 concentration. Differential thermogravimetric (DTG) diagram of sludge at different CO_2 concentration are shown in Fig. 2. In this work, DTG is used to determine the characteristic temperatures [16] such as maximum mass loss temperature or peak temperature, and final decomposition temperature which are defined as the temperature at 90% mass loss. Table 2 shows characteristic temperatures from the thermogram. Decomposition under inert (N₂) atmosphere shows two major peaks centered at ca. 300 and 500°C. However, the two small peaks at ca. 120 and 700°C are also observed, which can be explained as the loss of physical-adsorbed water and the loss of carbonate compounds respectively. When N₂ and CO₂ is presence together, two major DTG peaks are still observed at around 300°C and 500°C, but both peaks have higher magnitude than those from N₂ alone. It can be concluded that CO_2 enhances the rate of sludge decomposition. Furthermore, the presence of CO_2 slightly shifts the peak centered at 500°C from the case of only N₂ to 470, 455 and 425°C when CO_2 concentration is 20%, 40% and 100% respectively.

At higher temperature, the decomposition peak at 700°C, observed only in the N_2 atmosphere, is possibly due to two possible explanations. First, if the major component of the sludge at the peak 700°C is carbonate compounds, then CO₂ cannot significantly decompose these compounds, but N_2 at high temperature can. For the second explanation, if the components are not carbonate compounds, CO₂ will oxidize these compounds at much lower temperature, therefore the peak at higher temperature will not be observed. We can conclude that CO₂ does not affect the low temperature thermal decomposition mechanisms but it enhances the thermal decomposition rate correspond to its oxidizing ability. In another word, the pyrolytic mechanisms involve the devolatilization mechanism when the temperature is low so, CO₂ does not affect to pyrolytic mechanism but affect to only reaction rate. When the temperature reaches relatively high, CO_2 is likely to promote the oxidation reaction of the solid, thereby oxidation and pyrolysis may coexist.

Gas evolution profiles

The selected gas evolution profiles from sewage sludge pyrolysis under the N_2 and CO_2 atmosphere are shown in Fig. 3. The possible products are listed in Table 3. The chemical assignments have been done and agreed with other assignments reported in other literatures [6, 10 and 12]. Hydrogen is evolved in the wide range of temperature (400-800°C). As clearly seen, CO_2 promotes the production of H₂ until the temperature reaches ca. 750°C. At temperature of ca. 750°C, the H₂ production is inhibited by presence of CO_2 possibly because H₂ and CO_2 reach the equilibrium of water gas shift reaction with the water and CO which are generated during the process, as shown in Eq. (1). For higher CO_2 and H₂ concentration, the equilibrium of Eq. (1) will shift to the left side; therefore, the H₂ is consumed and then its evolution is lowered. This phenomenon can be confirmed by the fact that, at temperature, fixed carbon in the sewage sludge sample and char generated from pyrolysis can be gasified to form CO. Therefore, the CO evolution from the fixed carbon and char gasification can also be generated and shown in Eq. (2)

$$CO + H_2 O \leftrightarrow CO_2 + H_2$$

$$C + CO_2 \rightarrow 2CO$$
(1)
(2)

However, CO_2 does not affect the evolution of CH_4 (m/z=15) because CH_4 can be formed by termination of methyl and hydrogen radicals, which are generated from thermal decomposition of the sludge [10]. For small molecular weight hydrocarbon such as C_2H_2 , C3H6 and C_4H_{10} , CO_2 increases the amount of these hydrocarbon productions because CO_2 is more reactive to crack the hydrocarbon molecules of sewage sludge, resulting in generation of more quantity of small hydrocarbon molecules at higher evolution rate, as shown in the TGA results. The production of acetic acid (m/z=60) is started at temperature ca. 600°C cannot be explained by the thermally decomposition of the sludge sample at the high temperature since mass loss at the high temperature was not observed in the TG and DTG results. In addition, sludge cannot directly

 Table 1 Proximate and ultimate analysis

Proximate analysis				
	Moisture content (wt%)	Volatile matter* (wt%)	Fixed carbon* (wt%)	Ash* (wt%)
	6.16	43.26	4.52	46.06
Ultimate analysis				
	C (wt%)	H (wt%)	N (wt%)	S (wt%)
	19.49	3.01	2.87	1.52

*dry basis

 Table 2 Characteristic temperatures of sewage sludge pyrolysis

Sample	Atmosphere	T _{m1} (°C)	T _{m2} (°C)	T _{90%} (°C)
S-N ₂	N ₂	305	500	540
S-20%CO2	20%CO ₂ + 80%N ₂	305	470	520
S-40%CO2	40%CO ₂ + 60%N ₂	305	455	515
S-100%CO2	CO ₂	305	425	510

Fig. 1 TG profiles of sewage sludge pyrolysis under (\blacklozenge) N₂ atmosphere, (\Box) 20%CO₂ balance with N₂ (Δ) 40%CO₂ balance with N₂ and () CO₂ atmosphere.

Ta	ble 3	selected	molecu	lar ions	from mas	s spectrometer

m/z ratio	Molecular ions	Mainly due to	
2	H ₂ +	Hydrogen	
15	CH ₃ +	Methane	
26	C2H ₂ +	Ethylene	
28	CO+	Carbon monoxide	
39	C ₃ H ₃ +	Propylene	
44	CO ₂ +	Carbon dioxide	
55	C_4H_7 +	Butane	
60	CH ₃ COOH+	Acetic acid	

The liquid pyrolysate

The liquid fraction is obtained from the condensed vapor of pyrolysis products at temperature around - 20 °C. To identify the components in these products, GC/MS is utilized to analyze these samples. Table 4 summarizes the compounds in the liquid fraction from the pyrolysis of the sewage sludge. The liquid pyrolysate is composed of several types of decompose to acetic acid by itself. There are two possible reasons to explain the formation of acetic acid. First, CO₂ reacts with active volatile produced in the gas phase then form acetic acid. Second, CO₂ reacts with solid residue (or sludge itself) and accept proton then form acetic acid.

Fig. 2 DTG profiles of sewage sludge pyrolysis under (\blacklozenge) N₂ atmosphere, (\Box) 20% CO₂ balance with N₂ (Δ) 40%CO₂ balance with N₂ and (\Box) CO₂ atmosphere.

hydrocarbons. However, based on the GC/MS chromatogram, the result can be divided into three zones or three major groups of hydrocarbon compounds, according to the elution time, related to the molecular weight and polarity of the compounds. First zone is contributed to oxygenated and nitrogenated compounds. Second zone is due to the aliphatic and alicyclic compounds. Third zone is involved with aromatic compounds were found due to the significant amount of oxygen and nitrogen contents in original sludge. Because of its high oxygenated and nitrogenated compounds content, this pyrolysate is highly reactive.

For the pyrolysis at lower temperature (350°C), the chromatogram of liquid pyrolysate mainly consists of the oxygenated and nitrogenated compounds, aliphatic and alicyclic compounds, and small amount of aromatic compounds. Since the temperature is relatively low, the aromatic compounds are probably come from the devolatilization mechanism. When the CO_2 is present, the liquid pyrolysate from oxidative conditions give very similar chromatogram.

Fig. 3 selected evolution profiles of gas products from sewage sludge pyrolysis in different atmosphere. (♦) N₂ atmosphere, (■) CO₂ atmosphere.

Table 4 Chemical co	mpounds found	in liquid	l pyrolysate
---------------------	---------------	-----------	--------------

Compounds name	Formula	Molecular	Compounds name	Formula	Molecular	
		weight			weight	
Acids			Aliphatic and alicyclic compounds			
Acetic acid	$C_2H_4O_2$	60	Hexane	C_6H_{14}	86	
Propanoic acid	$C_3H_6O_2$	74	3,3-Dimethyl-1,6-heptadiene	$C_{9}H_{16}$	124	
Butanoic acid	$C_4H_8O_2$	88	6-Methyl l octane	$C_{9}H_{18}$	126	
Pentanoic acid	C ₅ H ₁₀ O ₂	102	1,2,3-Trimethyl cyclohexane	$C_{9}H_{18}$	126	
Hexanoic acid	C ₆ H ₁₂ O ₂	116	l-Decyne	$C_{10}H_{18}$	138	
Aldehydes an	id ketones		7-Methyl-1-octane	$C_{10}H_{18}$	140	
Acetaldehyde	CH₄O	32	2,5,5-Trimethyl heptane	$C_{10}H_{20}$	142	
Butanedial	$C_4H_6O_2$	86	Decane	$C_{10}H_{22}$	142	
3-Hydroxyl butanal	$C_4H_9O_2$	89	Undecane	C ₁₀ H ₂₂	156	
3-Methyl butanal	C5H10	86	2,4,6-Trimethyl octane	C11H24	156	
Pentanedial	$C_5H_8O_2$	100	1-Dodecane-3-yne	C11H24	164	
4-Octan-3-one	C ₈ H ₁₄ O	126	4-Dodecane	C12H20	168	
Alcohols an	d ethers		5-Dodecane	C12H24	168	
Oxirane	C ₂ H ₄ O	44	3-Methyl-3-undecane	C12H24	168	
			2-Propyl-1.3.3-trimethyl			
Ethyl alcohol	C_2H_6O	46	cvclohexane	C ₁₂ H ₂₄	168	
Cyclobutanol	C ₄ H ₆ O	70	1-Tridecyne	C13H24	180	
Cyclopropyl carbinol	C ₄ H ₈ O	72	6-Tridecane	C13H26	182	
2-Pentene-1-ol	C ₅ H ₁₀ O	86	6-Ethyl-2-methyl decane	C13H28	184	
5-Hexen-2-ol	$C_6H_{11}O$	99	3,7-Dimethyl undecane	C13H28	184	
2.4-Hexadiene-1-ol	C ₆ H ₁₅ O	103	1-Tetradecyne	C14H26	194	
Benzyl alcohol	C7H8O	108	3-Tetra decane	C14H28	196	
3-Heptyne-1-ol	C ₇ H ₁₂ O	112	4-Tetra decane	C14H28	196	
Furar	15		Pentadecane	C14H22	212	
Furan (Furfural)	C4H4O	68	Hexadecane	C16H34	226	
2,3-Dihydro-furan	C4H6O	70	Nitrogenated co	mpounds		
Furfural(2-Furaldehyde)	$C_{5}H_{4}O_{2}$	96	Hydrogencyanide	HCN	27	
Furfural alcohol	$C_5H_6O_2$	98	1H-Pyrrole-1-methyl	C_4H_4N	66	
Phenols and	l cresols		4-Pyridinamine	C ₆ H ₅ N ₂	94	
Phenol	C ₆ H ₆ O	90	2-Methyl pyridine	C_6H_7N	93	
o.m.p-Cresol	C ₇ H ₈ O	108	3-Methyl pyridine	C ₆ H ₇ N	93	
2.3-Dimethyl phenol	C _* H ₁₀ O	122	2-Ethyl pyridine	C ₂ H ₀ N	107	
<u>D1A</u>	5		o-Euryi pyriaine	C7H9IN	107	
Benzene	C_6H_6	78	Indole	C ₈ H ₇ N	117	
Toluene	C_7H_8	92	Benzyl nitrile	C ₈ H ₇ N	117	
Styrene	C_8H_8	104	1-Isocyano-4-methyl-benzene	C ₈ H ₈ N	118	
o,m,p-Xylene	$C_{8}H_{10}$	106	α-Ethylbenzene acetonitrile	$C_{10}H_{11}N$	145	
Ethyl benzene	$C_{*}H_{10}$	106				

This is because there is no effect of CO_2 on the pyrolysis atthis low temperature, which is also observed in TG results. If the pyrolysis temperature is increased to 450°C, the higher amount of three groups of hydrocarbon compounds is generated. The amount of oxygenated and nitrogenated compounds, aliphatic and alicyclic compounds are reach the maximum at temperature of 550°C while the amount of aromatic compounds are still increasing. If CO_2 is introduced, the higher amount of

oxygenated and nitrogenated compounds, aliphatic and alicyclic compounds were generated because of CO_2 oxidizing ability. Further increasing temperature, the aromatic compounds are the major products instead. It is due to the polymerization and cyclization reactions at high temperature [2]. When CO_2 is present, it enhances the extent of those reactions causing more production of the aromatic compounds. Quantitative analysis of liquid pyrolysate are need to be done in order to have a better understanding of the CO_2 effects on the pyrolytic mechanisms.

Conclusion

In this study, when the pyrolysis temperature of the sewage sludge is increased, the higher amount of gas and liquid is produced while the solid is less. Under CO_2 or oxidative atmosphere, the rate of thermal decomposition is significantly increased. If the temperature is relatively high (>550°C), CO_2 significantly changes the decomposition behavior of the sewage sludge, and also more amount of gas and liquid is obtained, due to the CO_2 oxidizing ability.

The major compounds in bio-oil obtained from inert pyrolysis are oxygenated and nitrogenated of aliphatic compounds. Furthermore, a small amount of alicyclic and aromatic compounds are also found in the bio-oil. Moreover, if the pyrolysis temperature is increased and CO_2 is used, the aromatic compounds will be more in the liquid products.

Acknowledgements

This work was supported by the Research Unit for Petrochemical and Environmental Catalysts, Ratchadapisek Somphot Endowment Fund, Chulalongkorn University, the Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PTT consortium) Chulalongkorn University, and the Thailand Research Fund (under Waste-to-Energy project and Royal Golden Jubilee Ph.D. Program: Grant 0061/45).

References

- [1] Dogru, M., Midilli, A. and Howarth, C. (2002) Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis, *Fuel Processing Technology*, **75**, pp. 55-82.
- [2] Conesa, J.A, Marcilla, A., Prats, D. and Rodriguez- Paster, M., (1997) Kinetic study of the pyrolysis of sewage sludge *Waste Management & Research*, **15**, pp.293-305.
- [3] Conesa, J.A., Marcilla, A., Moral, R., Moreno-Caselles, J. and Perez-Espinosa, A., (1998) Evolution of gases in the primary pyrolysis of different sewage sludge, *Thermochimica Acta*, **313**, pp. 63-73.
- [4] David, C., Salvador, S., Dirion, J.L. and Quintard, M., (2003) Determination of a reaction scheme for cardboard thermal degradation using thermal gravimetric analysis, *Journal of Analytical and Applied Pyrolysis*, **67**, pp. 307-323.
- [5] Chen, X. and Jeyaseelan, S.J., (2000) Study of sewage sludge pyrolysis mechanism and mathematical modeling, *Journal of Environmental Engineering*, **126**, pp. 1082-1087.
- [6] Shen, L. and Zhang, D., (2003) An experiment study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidized-bed, *Fuel*, **82**, pp. 465-472.
- [7] Sorum, L., Gronli, M.G. and Hustard, J.E., (2001) Pyrolysis characteristics and kinetics of municipal solid wastes, *Fuel*, **80**, pp. 1217-1227.
- [8] Martin-Gullon, I., Gomez-Rico, M.F., Fullana, A. and Font, R., (2003) Interrelation between the kinetic constant and the reaction order in pyrolysis, *Journal of Analytical and Applied Pyrolysis*, 68-69, pp. 1-11.

- [9] Stammbach, M.R., Kraaz, B., Hagenbucher, R. and Richarz, W., (1989) Pyrolysis of sewage sludge in a fluidized bed, *Energy & Fuels*, **3**, pp. 255-259.
- [10] Albright, L.F., Pyrolysis Theory and Industrial Practice. Academic Press, 1983.
- [11] Inquanzo, M., Menendez, J.A., Fuente, E. and Pis, J.J., (2001) Reactivity of pyrolyzed sewage sludge in air and CO2, *Journal of Analytical and Applied Pyrolysis*, **58-59**, pp. 943-954.
- [12] Inguanzo, M., Dominguez, A., Menendez, J.A., Blanco C.G. and Pis J.J. (2002) On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions, *Journal of Analytical and Applied Pyrolysis*, **63**, pp. 209-222.
- [13] Punnarutanakun, P., Meeyoo, V., Kalambaheti, C., Rangsunvigit, P., Rirksomboon, T. and Kitityanan, B., (2003) Pyrolysis of API separator sludge, *Journal of Analytical and Applied Pyrolysis*, **68-69**, pp. 547-560.
- [14] Morf, P.O., Secondary reactions of tar during thermochemical biomass conversion, Dissertation of Swiss Federal Institute of Technology Zurich (2001).
- [15] Liu, N.A., Fan, W., Dobashi, R. and Huang, L., (2002) Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere, *Journal of Analytical and Applied Pyrolysis*, **63**, pp. 303-325.